background preloader

PYTHAGORE de Samos

PYTHAGORE de Samos
Détails Affichages : 132615 PYTHAGORE de Samos. Naissance: vers 569 av.J-C. à Samos, Ionie - Mort: vers 475 av.J. Sa vie. D'une génération plus jeune que Thalès, il aurait vécu dans la seconde moitié du 6ème siècle av. 1. Né à Samos (Grèce), Pythagore avait 18 ans lorsqu'il participa aux Jeux olympique et remporta toutes les compétitions de pugilat (sport de l' antiquité comparable à la boxe, mais dans lequel les combattants portaient au poing un gantelet garni de fer ou de plomb, la ceste). En Ionie toute proche, il passa quelques années auprès de Thalès et de son élève Anaximandre (v. 610 BC - v. 546 BC).Puis en Syrie, il séjourna avec les sages Vénitiens qui l' initièrent aux mystères de Byblos.Puis au mont Carmel, dans le Liban d' aujourd'hui.De là, il s' embarqua pour l' Égypte et y resta 20 années. Lorsque les Perses envahirent le pays, il se serait retrouvé prisonnier et emmené à Babylone. Pythagore a acquis ses connaissances mathématiques au cours de ses voyages. Related:  nombre d'orMathématiquesnombre d'or

Vitruve : de l'Architecture : livre 3 1. APOLLON de Delphes déclara, par la bouche de sa pythonisse, que Socrate était le plus sage des mortels. On rapporte que ce philosophe disait, avec autant de raison que de justesse, qu'il eût fallu que les hommes eussent une large ouverture à la poitrine, afin que leurs pensées, loin d'y demeurer cachées, fussent, au contraire, exposées à l'oeil de l'observateur. Et plût aux dieux que, d'accord avec lui, la nature eût donné le moyen de les découvrir, de les apercevoir! 3. 4. 1. 1. 3. 4. 5. 6. 7. 8. 9. II. Chaque sorte de temple se distingue par la forme différente qu'il présente à notre vue. 2. 3. 4. 5. 6. 7. 8. III. 1. 2. 3. 4. 5. 6. 6. 8. 9. 10. 11. 12. 13. IV. 1. 2.

Euclide : éléments de Géométrie (libre VI) 1. Les figures rectilignes semblables sont celles dont les angles sont égaux chacun à chacun et dont les côtés placés autour des angles égaux sont proportionnels. 2. Les figures sont réciproques lorsque les antécédents et les conséquents des raisons se trouvent dans l'une et l'autre figure. 3. 4. 5. Les triangles et les parallélogrammes qui ont la même hauteur sont entre eux comme leurs bases. Soient les triangles ABC, ACD (fig. 121) et les parallélogrammes EC, CF qui ont la même hauteur, savoir, la perpendiculaire menée du point A sur la droite BD : je dis que le triangle ABC est au triangle ACD et que le parallélogramme EC est au parallélogramme CF comme la base BC est à la base CD. Prolongez la droite BD de part et d'autre vers les points H, L, et faites les droites BG, GH égales chacune à la base B C ; faites aussi les droites DK, KL égales chacune à la base CD, et menez les droites AG, AH, AK, AL. Le triangle BDE est égal au triangle CDE (prop. 37. Faites la même construction.

La composition et le nombre d'or construction composition,esquisse,regard,accrochage oeuvre,nombre d’or,composition artistique, Nombre d’or ou Phi Utilisé depuis la nuit des temps [1], dans l’architecture [2] comme dans les œuvres d’arts [3], le nombre d’or est parfois contesté. Sa rigueur mathématique, son modulor et son coté "utopique" lèvent bien des boucliers. On le retrouve néanmoins dans de nombreuses compositions et aussi dans la nature : dans la géométrie des pommes de pins et dans la structure des coquillages nautiles. La construction d’une composition : L’orientation de votre toile/papier est à étudier en premier lieu. Le regard et la composition : Le regard doit-il se porter sur un élément particulier du dessin ou de la peinture ? Construction d’un rectangle d’or Voyez la figure à gauche et en haut pour construire un rectangle d’or : Tracez un carré, du centre d’un des cotés (marqué C) et tracez un arc de cercle passant par un angle opposé. Une esquisse pour vérifier la composition : L’accrochage de l’œuvre :

Alcméon de crotone La bibliothèque libre. Index Général A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ALCMÉON de Crotone. Un des plus anciens pythagoriciens, s’il est vrai que Pythagore lui— même, vers les dernières années de sa’vie, l’ait initié à sa doctrine. D’après cette supposition, il aurait vécu dans le ve siècle avant J. C. Fini et infini.Repos et mouvement Impair et pair.Droit et courbe. Unité et pluralité. Mâle et femelle.Carré et toute figure à côtés inégaux. Cette table pythagoricienne tend évidemment à diviser le monde intelligible d’après le nombre réputé le plus parfait ; c’est pour la même raison que les pythagoriciens ont divisé en dix sphères le monde sensible. Les anciens historiens lui attribuent encore quelques opinions philosophiques d’une moindre importance. Cic., de Nat. Il est à regretter que rien ne se soit conservé de ses écrits, sauf quelques fragments de fort peu d’étendue ; dans l’un, cité par Diogène Laërce (liv.

Homme de vitruve « [...] que la Nature a distribué les mesures du corps humain comme ceci. Quatre doigts font une paume, et quatre paumes font un pied, six paumes font une coudée : quatre coudées font la hauteur d’un homme. Et quatre coudées font un double pas, et vingt quatre paumes font un homme ; et il a utilisé ces mesures dans ses constructions. Si vous ouvrez les jambes de façon à abaisser votre hauteur d’un quatorzième, et si vous étendez vos bras de façon que le bout de vos doigts soit au niveau du sommet de votre tête, vous devez savoir que le centre de vos membres étendus sera au nombril, et que l’espace entre vos jambes sera un triangle équilatéral. La longueur des bras étendus d’un homme est égale à sa hauteur. Depuis la racine des cheveux jusqu’au bas du menton, il y a un dixième de la hauteur d’un homme. Depuis les tétons jusqu’au sommet de la tête, un quart de la hauteur de l’homme. La main complète est un dixième de l’homme.

XMaths - Cours et Exercices de Mathématiques nombre d'or Le nombre d’or existe. Il s’agit de la proportion selon laquelle le rapport entre deux parties est égal au rapport entre la plus grande de ces parties et le tout. C’est un nombre irrationnel : (1 + √5) / 2. Soit 1,618039887... et un nombre infini de décimales. On le trouve notamment obligatoirement dans certaines figures géométriques comme rapport entre longueurs incommensurables. En particulier dans tout ce qui est pentagonal (au même titre que √2 intervient dans le carré, √3 dans le cube, pi dans le cercle…). Je renvoie à l'article "nombre d'or" de wikipédia ou au Que sais-je ? Car, de ce nombre, bien des usages sont faits qui sortent de la mathématique. Le nombre d’or dans l’art et l’architecture. Les premiers lieux communs concernent l’art et notamment l’architecture : il y en a cinq principaux. Il importe aussi d'être précis. 1) Les pyramides. Sur la quarantaine de pyramides royales égyptiennes recensées, près de trente sont pyramidales. 2) Le temple de Jérusalem. 3) Le Parthénon. 4.

Hippase, son histoire (controversée...) Hippase de Métaponte est un pythagoricien du 5é/6é siècle av. J.C. Il était chef des acousmaticiens, c’est à dire de ceux qui voulaient devenir des « mathématiciens » mais qui n’étaient pas encore initiés. On lui attribue plusieurs découvertes mathématiques : - la moyenne harmonique- l’irrationalité de la racine carrée de 2 (voir lien démonstration : la construction du dodécaèdre On le considère parfois comme le maître d’Héraclite, et donc comme croyant que le principe premier est le feu. Il existe plusieurs versions de l’histoire d’Hippase, principalement venant de différents historiens qui auraient eu entre leurs mains des livres grecs aujourd’hui disparus. Ainsi la découverte du dodécaèdre est parfois attribuée à Pythagore, plutôt qu’à Hippase. Mais le plus intéressant dans la légende d’Hippase reste sa « mort ». Il existe plusieurs versions de cette légende : Que déduire de toutes ces versions ?

Nombre d'or La proportion définie par a et b est dite d'« extrême et moyenne raison » lorsque a est à b ce que a + b est à a, soit : lorsque (a + b)/a = a/b. Le rapport a/b est alors égal au nombre d'or. Le nombre d'or (ou section dorée, proportion dorée, ou encore divine proportion) est une proportion, définie initialement en géométrie comme l'unique rapport a/b entre deux longueurs a et b telles que le rapport de la somme a + b des deux longueurs sur la plus grande (a) soit égal à celui de la plus grande (a) sur la plus petite (b) c'est-à-dire lorsque : Le découpage d'un segment en deux longueurs vérifiant cette propriété est appelé par Euclide découpage en « extrême et moyenne raison ». Ce nombre irrationnel est l'unique solution positive de l'équation x2 = x + 1. [a]. Géométrie[modifier | modifier le code] Figure 1. Proportion[modifier | modifier le code] Le nombre d'or possède une première définition d'origine géométrique, fondée sur la notion de proportion : Figure 3. Figure 4. Selon Thomas L.

CIVILISATIONS MATHEMATICIENNES : Maths-rometus, Histoire des maths, Illustrations, Maths, Mathématiques, Jean-Luc Romet, Math Préhistoire (vers 35000 avant JC - vers 3000 avant JC) Mésopotamie (vers 3000 avant JC - vers 200 avant JC) Egypte (vers 3000 avant JC - vers 330 avant JC) Chine (vers 1300 avant JC - vers 1300 après JC) Grèce (vers 700 avant JC - vers 500 après JC) Mayas (vers 300 avant JC - vers 900 après JC) Romains (vers 100 avant JC - vers 400 après JC) Inde (vers 200 - vers 1200) Arabie (vers 700 - vers 1400) Europe (vers 900 - aujourd’hui) Mondialisation (vers 1900 - aujourd'hui) et médailles Fields Quelques grands mathématiciens européens Quelques mathématiciens français du XXème siècle (parrains)

Une bien étrange secte, mais des mathématiciens, Le nombre d'or L' histoire ... Il y a 10 000 ans : Première manifestation humaine de la connaissance du nombre d'or (temple d'Andros découvert sous la mer des Bahamas). 2800 av JC : La pyramide de Khéops a des dimensions qui mettent en évidence l'importance que son architecte attachait au nombre d'or. Vè siècle avant J-C. (447-432 av.JC) : Le sculpteur grec Phidias utilise le nombre d'or pour décorer le Parthénon à Athènes, en particulier pour sculpter la statue d'Athéna Parthénos . IIIè siècle avant J-C. : Euclide évoque le partage d'un segment en "extrême et moyenne raison" dans le livre VI des Eléments. 1498 : Fra Luca Pacioli, un moine professeur de mathématiques, écrit De divina proportione ("La divine proportion"). Au XIXème siècle : Adolf Zeising (1810-1876), docteur en philosophie et professeur à Leipzig puis Munich, parle de "section d'or" (der goldene Schnitt) et s'y intéresse non plus à propos de géométrie mais en ce qui concerne l'esthétique et l'architecture.

Related: