background preloader

Cédric Villani explique le Nombre d'or au Futuroscope

Cédric Villani explique le Nombre d'or au Futuroscope

http://www.youtube.com/watch?v=6H-t3WwfNcc

Related:  Vidéo Histoire des NombresVidéos mathématiquesMath

Dimensions Chapitre 9 Quels sont les "défauts" et les "implicites" de la preuve présentée ? En voici quelques-uns : - Est-il par exemple évident qu'on peut toujours abaisser une perpendiculaire d'un point sur un plan ? L'a-t-on démontré ? - Est-il si évident qu'une droite joignant le pôle nord à un point du plan tangent au pôle sud rencontre la sphère en un autre point ? Institut Henri Poincaré L'Institut Henri Poincaré produit un documentaire exclusif de 32 minutes sur le mathématicien d'exception Joseph-Louis Lagrange, en coproduction avec le CNRS Images et en partenariat avec l'Institut Lagrange de Paris.Des historiens retracent le parcours européen de Lagrange et montrent comment il est passé d'académicien protégé des puissants à un professeur chargé d'éduquer les nouveaux Citoyens au moment de la Révolution Française. Ils posent la question de l'implication des scientifiques dans la vie politique de l'époque. Des scientifiques expliquent combien les travaux de Lagrange, notamment en analyse et en mécanique céleste, sont novateurs dans la façon de concevoir les problèmes à l'époque, et permettent de comprendre comment il s'est positionné à la frontière entre les mathématiques et la physique, et a pu profondément marquer les sciences et leur enseignement jusqu'à aujourd'hui.

Dimensions Chapitre 7 et 8 Rappelons-nous la formule qui exprime la projection de Hopf. En termes des coordonnées complexes, elle envoie (z1,z2) sur le point a=z2/z1 considéré comme un point de S2. Fixer un parallèle p dans S2, c'est fixer le module d'un nombre complexe, si bien que l'image réciproque d'un parallèle est décrite par une équation de la forme |z2/z1| = constante. Choisissons par exemple 1 pour cette constante si bien que z1 et z2 ont le même module. Dimensions Chapitre 2 Dans le film, on voit les cinq polyèdres réguliers qui traversent le plan et on montre les sections/polygones qui se déforment. Ce n'est pas facile car les sections dépendent de la manière dont les polyèdres traversent le plan. Par exemple, si un cube se présente de manière qu'une de ses faces soit parallèle au plan, il n'y a pas de surprise : les sections sont des carrés.

Dimensions Chapitres 5 et 6 Deux notions seront utiles pour la suite : Le module d'un nombre complexe z= x +i y est simplement la distance du point correspondant (x,y) à l'origine. On le note |z| et il est égal, d'après le théorème de Pythagore à √ (x2+y2) . Par exemple, le module de i est égal à 1 et celui de 1+i à √2. L'argument indique la direction de z. Fonction polynôme Un article de Wikipédia, l'encyclopédie libre. ) de la forme : où est un entier naturel et Dimensions Chapitres 3 et 4 Puis le 24, cet objet dont nous pensons que Schläfli était le plus fier ! La raison est que ce nouveau venu est vraiment nouveau ; il ne généralise en aucun cas un polyèdre de dimension 3, comme dans le cas des autres polyèdres. De plus, il a cette propriété merveilleuse d'être autodual : par exemple, il a autant de faces de dimension 2 que de faces de dimension 1 (les arêtes) et autant de faces de dimension 3 que de faces de dimension 0 (les sommets). Et enfin, nous voyons les polyèdres 120 et 600 dont nous avions déjà vu les sections. Cette nouvelle vue nous montre d'autres aspects de ces polyèdres de dimension 4, qui sont décidément bien compliqués. Ces deux méthodes, les sections et les ombres, ont des avantages, mais il faut reconnaître qu'ils ne rendent pas justice à toutes les symétries de ces magnifiques objets.

Dimensions Chapitre 1 Les plans perpendiculaires à l'axe coupent la sphère sur des cercles qu'on appelle des parallèles. On les appelle comme cela peut-être parce qu'ils ne se coupent pas, comme des droites parallèles... Les parallèles sont d'autant plus petits qu'ils sont proches des pôles. L'équateur est un parallèle particulier, à mi-chemin entre les deux pôles ; c'est le plus long des parallèles.

Related: