background preloader

Astronomy

Astronomy is a natural science that is the study of celestial objects (such as moons, planets, stars, nebulae, and galaxies), the physics, chemistry, and evolution of such objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explosions, gamma ray bursts, and cosmic background radiation. A related but distinct subject, cosmology, is concerned with studying the universe as a whole.[1] Astronomy is one of the oldest sciences. Prehistoric cultures have left astronomical artifacts such as the Egyptian monuments and Nubian monuments, and early civilizations such as the Babylonians, Greeks, Chinese, Indians, Iranians and Maya performed methodical observations of the night sky. However, the invention of the telescope was required before astronomy was able to develop into a modern science. During the 20th century, the field of professional astronomy split into observational and theoretical branches. Etymology[edit] History[edit] Scientific revolution[edit]

Neuroscience Neuroscience is the scientific study of the nervous system.[1] Traditionally, neuroscience has been seen as a branch of biology. However, it is currently an interdisciplinary science that collaborates with other fields such as chemistry, computer science, engineering, linguistics, mathematics, medicine and allied disciplines, philosophy, physics, and psychology. It also exerts influence on other fields, such as neuroeducation[2] and neurolaw. The term neurobiology is usually used interchangeably with the term neuroscience, although the former refers specifically to the biology of the nervous system, whereas the latter refers to the entire science of the nervous system. Because of the increasing number of scientists who study the nervous system, several prominent neuroscience organizations have been formed to provide a forum to all neuroscientists and educators. History[edit] The study of the nervous system dates back to ancient Egypt. Modern neuroscience[edit] Human nervous system

Cartography Cartography (from Greek χάρτης khartēs, "map"; and γράφειν graphein, "write") is the study and practice of making maps. Combining science, aesthetics, and technique, cartography builds on the premise that reality can be modeled in ways that communicate spatial information effectively. The fundamental problems of traditional cartography are to:[citation needed] Set the map's agenda and select traits of the object to be mapped. This is the concern of map editing. Modern cartography is largely integrated with geographic information science (GIScience) and constitutes many theoretical and practical foundations of geographic information systems. History[edit] The earliest known map is a matter of some debate, both because the definition of "map" is not sharp and because some artifacts speculated to be maps might actually be something else. Mappa mundi are the Medieval European maps of the world. The Arab geographer Muhammad al-Idrisi produced his medieval atlas Tabula Rogeriana in 1154.

Livestock transportation Sheep in a B Double truck, Moree, NSW, Australia Twelve pigs being transported to an auction sale. Livestock transportation is the movement of livestock, by ship, rail, road or air. Early records (USA only)[edit] The first known records of livestock transportation occurred in about 1607 on an English ship named the Susan Constant, which was transporting Jamestown bound colonists. 1800s[edit] Chicago’s meat exports had risen to almost 10% by 1848. 1900s[edit] By the early 20th century, railroads dominated the dressed meat market and the commodity trucking industry was in its infancy. Present day[edit] Sheep droving in Utah. Today most livestock and processed meat is transported by trucking companies that have specialized trailers for this purpose. See also[edit] Transhumance References[edit] Skaggs, J. Media related to Livestock transport at Wikimedia Commons

Crop rotation Satellite image of circular crop fields in Kansas in late June 2001. Healthy, growing crops are green. Corn would be growing into leafy stalks by then. Sorghum, which resembles corn, grows more slowly and would be much smaller and therefore, (possibly) paler. Wheat is a brilliant yellow as harvest occurs in June. Effects of crop rotation and monoculture at the Swojec Experimental Farm, Wroclaw University of Environmental and Life Sciences. Crop rotation is the practice of growing a series of dissimilar/different types of crops in the same area in sequential seasons. History[edit] Middle Eastern farmers practiced crop rotation in 6000 BC without understanding the chemistry, alternately planting legumes and cereals. From the end of the Middle Ages until the 20th century, the three-year rotation was practised by farmers in Europe with a rotation of rye or winter wheat, followed by spring oats or barley, then letting the soil rest (leaving it fallow) during the third stage. Objectives[edit]

Human genome The human genome is the complete set of genetic information for humans (Homo sapiens). This information is encoded as DNA sequences within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. Human genomes include both protein-coding DNA genes and noncoding DNA. Haploid human genomes (contained in egg and sperm cells) consist of three billion DNA base pairs, while diploid genomes (found in somatic cells) have twice the DNA content. While there are significant differences among the genomes of human individuals (on the order of 0.1%), these are considerably smaller than the differences between humans and their closest living relatives, the chimpanzees (approximately 4%[1]) and bonobos. The Human Genome Project produced the first complete sequences of individual human genomes. Although the sequence of the human genome has been (almost) completely determined by DNA sequencing, it is not yet fully understood. Coding vs. noncoding DNA[edit]

Military technology Military technology is the collection of equipment, vehicles, structures and communication systems that are designed for use in warfare. It comprises the kinds of technology that are distinctly military in nature and not civilian in application, usually because they are impractical in civilian application, have no legal civilian usage, or are dangerous to use without appropriate military training. It is common for military technology to have been researched and developed by scientists and engineers specifically for use in battle by the armed forces. There are a significant number of military inventions whose technologies were originally developed and designed for military purposes, and which are now used by civilians with sometimes minor or no modifications at all. Vehicles and transports[edit] Military vehicles are land combat or transportation vehicles, excluding rail-based, which are designed for or in significant use by military forces. Military robots[edit] Fortifications[edit]

Seedbank Seedbank at the Western Regional Plant Introduction Station A seedbank (or seed bank) stores seeds as a source for planting in case seed reserves elsewhere are destroyed. It is a type of gene bank. The seeds stored may be food crops, or those of rare species to protect biodiversity. Optimal storage conditions[edit] Depending on the species, seeds are dried to a suitably low moisture content according to an appropriate protocol. Challenges[edit] Stored specimens have to be regularly replanted when they begin to lose viability.Only a limited part of the world's biodiversity is stored.To prepare seeds for storage, put them with moist peat moss into container.It is difficult or impossible to store recalcitrant seeds.There is a need to improve cataloguing and data management. Alternatives[edit] In-situ conservation of seed-producing plant species is another conservation strategy. Longevity[edit] Seeds may be viable for hundreds and even thousands of years. Facilities[edit] See also[edit]

Refrigerator Food in a refrigerator with its door open A side-by side refrigerator with an icemaker A refrigerator (colloquially fridge) is a common household appliance that consists of a thermally insulated compartment and a heat pump (mechanical, electronic, or chemical) that transfers heat from the inside of the fridge to its external environment so that the inside of the fridge is cooled to a temperature below the ambient temperature of the room. A refrigerator maintains a temperature a few degrees above the freezing point of water. History[edit] Refrigeration technology[edit] The history of artificial refrigeration began when Scottish professor William Cullen designed a small refrigerating machine in 1755. Schematic of Dr. In 1805, American inventor Oliver Evans described a closed vapor-compression refrigeration cycle for the production of ice by ether under vacuum. Domestic refrigerator[edit] General Electric "Monitor-Top" refrigerator, introduced in 1927. Freezer[edit] Styles of refrigerators[edit]

Agricultural machinery Agricultural machinery is machinery used in the operation of an agricultural area or farm. History[edit] The Industrial Revolution[edit] With the coming of the Industrial Revolution and the development of more complicated machines, farming methods took a great leap forward.[1] Instead of harvesting grain by hand with a sharp blade, wheeled machines cut a continuous swath. Steam power[edit] Internal combustion engines[edit] Types[edit] A John Deere cotton harvester at work in a cotton field. From left to right: John Deere 7800 tractor with Houle slurry trailer, Case IH combine harvester, New Holland FX 25 forage harvester with corn head. Combines might have taken the harvesting job away from tractors, but tractors still do the majority of work on a modern farm. After planting, other implements can be used to cultivate weeds from between rows, or to spread fertilizer and pesticides. Modern irrigation relies on machinery. New technology and the future[edit] References[edit] See also[edit]

Agricultural science Agricultural science is a broad multidisciplinary field of biology that encompasses the parts of exact, natural, economic and social sciences that are used in the practice and understanding of agriculture. (Veterinary science, but not animal science, is often excluded from the definition.) Agriculture and agricultural science[edit] The two terms are often confused. However, they cover different concepts: Agriculture is the set of activities that transform the environment for the production of animals and plants for human use. Agricultural sciences include research and development on: Fertilizer[edit] One of the most common yield reducers is because of fertilizer not being applied in slightly higher quantities during transition period, the time it takes the soil to rebuild its aggregates and organic matter. Agricultural science: a local science[edit] With the exception of theoretical agronomy, research in agronomy, more than in any other field, is strongly related to local areas.

Astrophysics Astrophysics (from Greek astron, ἄστρον "star", and physis, φύσις "nature") is the branch of astronomy that deals with the physics of the universe, especially with "the nature of the heavenly bodies, rather than their positions or motions in space."[1][2] Among the objects studied are galaxies, stars, planets, extrasolar planets, the interstellar medium and the cosmic microwave background.[3][4] Their emissions are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics. In practice, modern astronomical research often involves a substantial amount of work in the realm(s) of theoretical and/or observational physics.

Computational complexity theory Computational complexity theory is a branch of the theory of computation in theoretical computer science and mathematics that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Closely related fields in theoretical computer science are analysis of algorithms and computability theory. Computational problems[edit] Problem instances[edit] Turing machine[edit]

Materials science Depiction of two "Fullerene Nano-gears" with multiple teeth. Materials science, also commonly known as materials engineering, is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This relatively new scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. History[edit] Before the 1960s (and in some cases decades after), many materials science departments were named metallurgy departments, from a 19th and early 20th century emphasis on metals. Fundamentals[edit] The basis of materials science involves relating the desired properties and relative performance of a material in a certain application to the structure of the atoms and phases in that material through characterization. The manufacture of a perfect crystal of a material is currently physically impossible. Not all materials have a regular crystal structure. Classes of materials[edit] [edit]

Related: