background preloader

General relativity

General relativity
General relativity, or the general theory of relativity, is the geometric theory of gravitation published by Albert Einstein in 1916[1] and the current description of gravitation in modern physics. General relativity generalizes special relativity and Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. Some predictions of general relativity differ significantly from those of classical physics, especially concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light. Einstein's theory has important astrophysical implications. History[edit] Albert Einstein developed the theories of special and general relativity.

http://en.wikipedia.org/wiki/General_relativity

Related:  physics

Physics World reveals its top 10 breakthroughs for 2011 The two physics stories that dominated the news in 2011 were questions rather than solid scientific results, namely "Do neutrinos travel faster than light?" and "Has the Higgs boson been found?". However, there have also been some fantastic bona fide research discoveries over the last 12 months, which made it difficult to decide on the Physics World 2011 Breakthrough of the Year. But after much debate among the Physics World editorial team, this year's honour goes to Aephraim Steinberg and colleagues from the University of Toronto in Canada for their experimental work on the fundamentals of quantum mechanics.

Chaos theory A double rod pendulum animation showing chaotic behavior. Starting the pendulum from a slightly different initial condition would result in a completely different trajectory. The double rod pendulum is one of the simplest dynamical systems that has chaotic solutions. Chaos: When the present determines the future, but the approximate present does not approximately determine the future.

Gravitational lens A gravitational lens refers to a distribution of matter (such as a cluster of galaxies) between a distant source and an observer, that is capable of bending the light from the source, as it travels towards the observer. This effect is known as gravitational lensing and the amount of bending is one of the predictions of Albert Einstein's general theory of relativity.[1] (Classical physics also predicts bending of light, but only half that of general relativity's.[2]) Although Orest Chwolson (1924) or Frantisek Klin (1936) are sometimes credited as being the first ones to discuss the effect in print, the effect is more commonly associated with Einstein, who published a more famous article on the subject in 1936. Fritz Zwicky posited in 1937 that the effect could allow galaxy clusters to act as gravitational lenses.

Schrödinger's cat Schrödinger's cat: a cat, a flask of poison, and a radioactive source are placed in a sealed box. If an internal monitor detects radioactivity (i.e. a single atom decaying), the flask is shattered, releasing the poison that kills the cat. The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead. Yet, when one looks in the box, one sees the cat either alive or dead, not both alive and dead. This poses the question of when exactly quantum superposition ends and reality collapses into one possibility or the other. Schrödinger's cat is a thought experiment, sometimes described as a paradox, devised by Austrian physicist Erwin Schrödinger in 1935.[1] It illustrates what he saw as the problem of the Copenhagen interpretation of quantum mechanics applied to everyday objects.

Einstein's Gravity Theory Passes Toughest Test Yet An extreme pair of superdense stars orbiting each other has put Einstein's general theory of relativity to its toughest test yet, and the crazy-haired physicist still comes out on top. About 7,000 light-years from Earth, an exceptionally massive neutron star that spins around 25 times a second is orbited by a compact, white dwarf star. The gravity of this system is so intense that it offers an unprecedented testing ground for theories of gravity. Scientists know general relativity, proposed by Albert Einstein in 1915, isn't the complete story. While it does very well describing large, massive systems, it's incompatible with quantum mechanics, which governs the physics of the very small. For something extremely small, yet extremely massive — such as a black hole — the two theories contradict each other, and scientists are left without a physical description. [6 Weird Facts About Gravity]

Gravitational microlensing Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects ranging from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit lots of light (stars) or large objects that block background light (clouds of gas and dust). These objects make up only a tiny fraction of the mass of a galaxy.

Bohr–Einstein debates The Bohr–Einstein debates were a series of public disputes about quantum mechanics between Albert Einstein and Niels Bohr, who were two of its founders. Their debates are remembered because of their importance to the philosophy of science. An account of the debates has been written by Bohr in an article titled "Discussions with Einstein on Epistemological Problems in Atomic Physics".[1] Despite their differences of opinion regarding quantum mechanics, Bohr and Einstein had a mutual admiration that was to last the rest of their lives.[2]

NASA Gravity Probe Confirms Two Einstein Theories A NASA probe orbiting Earth has confirmed two key predictions of Albert Einstein's general theory of relativity, which describes how gravity causes masses to warp space-time around them. The Gravity Probe B (GP-B) mission was launched in 2004 to study two aspects of Einstein's theory about gravity: the geodetic effect, or the warping of space and time around a gravitational body, and frame-dragging, which describes the amount of space and time a spinning objects pulls with it as it rotates. "Imagine the Earth as if it were immersed in honey," Francis Everitt, GP-B principal investigator at Stanford University in Palo Alto, Calif., said in a statement. 10 Strange Things About The Universe Space The universe can be a very strange place. While groundbreaking ideas such as quantum theory, relativity and even the Earth going around the Sun might be commonly accepted now, science still continues to show that the universe contains things you might find it difficult to believe, and even more difficult to get your head around. Theoretically, the lowest temperature that can be achieved is absolute zero, exactly ?273.15°C, where the motion of all particles stops completely.

Rapid eye movement sleep Rapid eye movement (REM) sleep is a stage of sleep characterized by the rapid and random movement of the eyes. Rapid eye movement sleep is classified into two categories: tonic and phasic.[1] It was identified and defined by Nathaniel Kleitman and his student Eugene Aserinsky in 1953. Criteria for REM sleep includes rapid eye movement, low muscle tone and a rapid, low-voltage EEG; these features are easily discernible in a polysomnogram,[2] the sleep study typically done for patients with suspected sleep disorders.[3]

Einstein's Theory of General Relativity: A Simplified Explanation In 1905, Albert Einstein determined that the laws of physics are the same for all non-accelerating observers, and that the speed of light in a vacuum was independent of the motion of all observers. This was the theory of special relativity. It introduced a new framework for all of physics and proposed new concepts of space and time. Einstein then spent 10 years trying to include acceleration in the theory and published his theory of general relativity in 1915. In it, he determined that massive objects cause a distortion in space-time, which is felt as gravity. Two objects exert a force of attraction on one another known as "gravity."

Related: