background preloader

Ultra Fractal (Software)

Ultra Fractal (Software)

GNU XaoS - GNU XaoS XaoS is an interactive fractal zoomer. It allows the user to continuously zoom in or out of a fractal in a fluid, continuous motion. This capability makes XaoS great for exploring fractals, and it’s fun! If you don’t know what fractals are, don’t worry. XaoS includes many animated tutorials that make learning about fractals fun and easy. These tutorials are also a great introduction to all of XaoS’s features. XaoS can display many different fractal types, including Mandelbrot , Barnsley , Newton , Phoenix, and many more. XaoS currently runs on Windows, Mac OS X, Linux, and other Unix-like systems. XaoS is free software, licensed under the GPL . This web site is maintained by the DokuWiki system.

Fictional Landscapes Colossal has seen its fair share of commendable book and paper work the last few weeks, but this was too good to pass up. UK-based artist Kyle Kirkpatrick constructs these wonderfully tiny dioramas using the topographies of carved books. Via the artist: My practice is primarily concerned with the notion of the imagined landscape. I don’t know about you but given the right disposable book (blasphemy!) The Deepest Mandelbrot Fractal Zoom Ever Done- Bigger Than Any Universe That'll Ever Exist The Deepest Mandelbrot Fractal Zoom Ever Done- Bigger Than Any Universe That'll Ever Exist The boys of Team Fresh have done it and now its new MandelbrotFractal-zoom posted on the web! Do you remember to this zoom with the e ^ Several million was 214 times larger than the known universe? The final magnification of the Mandelbrot fractal is 6.066e +228 (2 ^ 760). want some perspective? 1E6 Vancouver Iceland 1E9 Jupiter's radius 1E12 Earth's orbit 1E18 distance to Alpha Centauri 1E21 Milky Way galaxy 1E30 large does not cover it! Specifically, it means that you hunt in those 13 minutes and 45 seconds with a speed beyond your imagination and Warp10 by this fractal, backed by fantastic Deep Tech House, all in HD quality. More (with video):

Mu-Ency -- The Encyclopedia of the Mandelbrot Set at MROB A second-order embedded Julia set This is a picture from the Mandelbrot Set, one of the most well-known fractal images in the world. (Click it for a larger version). The Mandelbrot Set is one of my hobbies, and I have collected a large amount of information about it. Here are some entries from Mu-Ency: Mandelbrot Set: The mathematical definition. History: How the Mandelbrot Set was discovered, how it became popular, etc. Exploring: The many things you can expect to find when you explore on your own. Area: I have been involved in finding the area of the Mandelbrot Set. Algorithms: How to compute the Mandelbrot Set and how to draw it. R2 Naming System: I have also developed a rather precise (and complex) naming system for features of the Mandelbrot Set. You can also look up specific terms in the index . Coordinates of the image above: Center: -1.769 110 375 463 767 385 + 0.009 020 388 228 023 440 i Width (and height): 0.000 000 000 000 000 160 Algorithm: distance estimator Iterations : 10000

Ensemble de Mandelbrot Un article de Wikipédia, l'encyclopédie libre. L'ensemble de Mandelbrot (en noir) Zoom sur une partie de l'ensemble. On remarque l'autosimilarité des structures. est bornée. Historique[modifier | modifier le code] L'ensemble de Mandelbrot tire ses origines de la dynamique complexe, un domaine défriché par les mathématiciens français Pierre Fatou et Gaston Julia au début du XXe siècle. La première représentation de cet ensemble apparaît en 1978 dans un article de Robert Brooks (en) et Peter Matelski[2]. Le 1er mars 1980, au centre Thomas J. En 1984, l'étude de l'ensemble de Mandelbrot commence réellement avec les travaux d'Adrien Douady et de John H. En 1985, les mathématiciens Heinz-Otto Peitgen (en) et Peter Richter popularisent l'ensemble de Mandelbrot par des images de qualité et qui frappent les esprits[6],[7],[8]. Propriétés[modifier | modifier le code] Définition[modifier | modifier le code] Barrière du module égal à 2[modifier | modifier le code] Géométrie élémentaire et d'équation polaire