background preloader

Eternal return

Eternal return
Eternal return (also known as "eternal recurrence") is a concept that the universe has been recurring, and will continue to recur, in a self-similar form an infinite number of times across infinite time or space. The concept is found in Indian philosophy and in ancient Egypt and was subsequently taken up by the Pythagoreans and Stoics. With the decline of antiquity and the spread of Christianity, the concept fell into disuse in the Western world, with the exception of Friedrich Nietzsche, who connected the thought to many of his other concepts, including amor fati. In addition, the philosophical concept of eternal recurrence was addressed by Arthur Schopenhauer. It is a purely physical concept, involving no supernatural reincarnation, but the return of beings in the same bodies. Time is viewed as being not linear but cyclical. Premise[edit] The oscillatory universe model in physics could be provided as an example of how the universe cycles through the same events infinitely. Judaism[edit]

Cyclic model A cyclic model (or oscillating model) is any of several cosmological models in which the universe follows infinite, or indefinite, self-sustaining cycles. For example, the oscillating universe theory briefly considered by Albert Einstein in 1930 theorized a universe following an eternal series of oscillations, each beginning with a big bang and ending with a big crunch; in the interim, the universe would expand for a period of time before the gravitational attraction of matter causes it to collapse back in and undergo a bounce. Overview[edit] In the 1920s, theoretical physicists, most notably Albert Einstein, considered the possibility of a cyclic model for the universe as an (everlasting) alternative to the model of an expanding universe. However, work by Richard C. Tolman in 1934 showed that these early attempts failed because of the cyclic problem: according to the Second Law of Thermodynamics, entropy can only increase.[1] This implies that successive cycles grow longer and larger.

Infinity (philosophy) The Isha Upanishad of the Yajurveda (c. 4th to 3rd century BC) states that "if you remove a part from infinity or add a part to infinity, still what remains is infinity". The Jain mathematical text Surya Prajnapti (c. 400 BC) classifies all numbers into three sets: enumerable, innumerable, and infinite. Each of these was further subdivided into three orders: Enumerable: lowest, intermediate and highestInnumerable: nearly innumerable, truly innumerable and innumerably innumerableInfinite: nearly infinite, truly infinite, infinitely infinite The Jains were the first to discard the idea that all infinites were the same or equal. According to Singh (1987), Joseph (2000) and Agrawal (2000), the highest enumerable number N of the Jains corresponds to the modern concept of aleph-null (the cardinal number of the infinite set of integers 1, 2, ...), the smallest cardinal transfinite number. In the Jaina work on the theory of sets, two basic types of infinite numbers are distinguished. ... ...

Universal Darwinism Universal Darwinism (also known as generalized Darwinism, universal selection theory,[1] or Darwinian metaphysics[2][3][4]) refers to a variety of approaches that extend the theory of Darwinism beyond its original domain of biological evolution on Earth. The idea is to formulate a generalized version of the mechanisms of variation, selection and heredity proposed by Charles Darwin, so that they can be applied to explain evolution in a wide variety of other domains, including psychology, economics, culture, medicine, computer science and physics. Basic mechanisms[edit] At the most fundamental level, Charles Darwin's theory of evolution states that organisms evolve and adapt to their environment by an iterative process. After those fit variants are retained, they can again undergo variation, either directly or in their offspring, starting a new round of the iteration. History and development[edit] Starting in the 1950s, Donald T. Examples of universal Darwinist theories[edit] Books[edit]

On Truth and Lies in a Nonmoral Sense On Truth and Lies in a Nonmoral Sense (1873) Available at: Other works by Nietzsche: Once upon a time, in some out of the way corner of that universe which is dispersed into numberless twinkling solar systems, there was a star upon which clever beasts invented knowing. That was the most arrogant and mendacious minute of "world history," but nevertheless, it was only a minute. It is remarkable that this was brought about by the intellect, which was certainly allotted to these most unfortunate, delicate, and ephemeral beings merely as a device for detaining them a minute within existence. Insofar as the individual wants to maintain himself against other individuals, he will under natural circumstances employ the intellect mainly for dissimulation. In particular, let us further consider the formation of concepts. What then is truth?

Event correlation Event correlation is a technique for making sense of a large number of events and pinpointing the few events that are really important in that mass of information. This is accomplished by looking for and analyzing relationships between events. History[edit] Event correlation has been used in various fields for many years: Examples and application domains[edit] Integrated management is traditionally subdivided into various fields: Event correlation takes place in different components depending on the field of study: Within the field of network management, event correlation is performed in a management platform typically known as a Network Management Station or Network Management System (NMS). In this article, we focus on event correlation in integrated management and provide links to other fields. Event correlation in integrated management[edit] Events and event correlator[edit] Event correlation usually takes place inside one or several management platforms. Step-by-step decomposition[edit] M.

Shape of the Universe The shape of the universe is the local and global geometry of the universe, in terms of both curvature and topology (though, strictly speaking, it goes beyond both). When physicsist describe the universe as being flat or nearly flat, they're talking geometry: how space and time are warped according to general relativity. When they talk about whether it open or closed, they're referring to its topology.[1] Although the shape of the universe is still a matter of debate in physical cosmology, based on the recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements "We now know that the universe is flat with only a 0.4% margin of error", according to NASA scientists. [2] Theorists have been trying to construct a formal mathematical model of the shape of the universe. In formal terms, this is a 3-manifold model corresponding to the spatial section (in comoving coordinates) of the 4-dimensional space-time of the universe. Two aspects of shape[edit] Local geometry (spatial curvature)[edit]

List of paradoxes This is a list of paradoxes, grouped thematically. The grouping is approximate, as paradoxes may fit into more than one category. Because of varying definitions of the term paradox, some of the following are not considered to be paradoxes by everyone. This list collects only scenarios that have been called a paradox by at least one source and have their own article. Although considered paradoxes, some of these are based on fallacious reasoning, or incomplete/faulty analysis. Logic[edit] Self-reference[edit] These paradoxes have in common a contradiction arising from self-reference. Barber paradox: A barber (who is a man) shaves all and only those men who do not shave themselves. Vagueness[edit] Ship of Theseus (a.k.a. Mathematics[edit] Statistics[edit] Probability[edit] Infinity and infinitesimals[edit] Geometry and topology[edit] The Banach–Tarski paradox: A ball can be decomposed and reassembled into two balls the same size as the original.

On Memetics On the "Art of Jesuitism In paragraph 206 of Beyond Good and Evil, Nietzsche discusses “Jesuitism.” He does not like it. What was Nietzsche talking about? Nietzsche always has a point, even in his most bizarre aphorisms – to wit, #132: “One is punished most for his virtues.” If we recall what Christ said about who would be most persecuted, this paradoxical aphorism seems right on target. Truth and virtue are, in fact, “punished.” In Nietzsche’s Preface, democracy and “Jesuitism” were viewed with some contempt. Also, in Nietzsche’s view, Jesuits, with their once infamous liberal theory of probabilism, and democracy, with its theory of equality, have prevented this explosion. In the chapter devoted to “We Scholars,” Nietzsche explains something that many of us have wondered about, namely, “Why do scholars cause so much trouble?” Then Nietzsche adds: “‘Jesuitism’ of mediocrity. . .instinctively works for the destruction of the uncommon man and tries to break – better still – relax every bent bow.”

Related: