background preloader

Matière noire

Matière noire
Un article de Wikipédia, l'encyclopédie libre. Cet article concerne la matière de nature inconnue. Pour le film, voir Dark Matter. La matière noire (ou matière sombre), traduction de l'anglais dark matter, désigne une catégorie de matière hypothétique jusqu'à présent non détectée, invoquée pour rendre compte d'observations astrophysiques, notamment les estimations de masse des galaxies et des amas de galaxies et les propriétés des fluctuations du fond cosmologique. Différentes hypothèses sont émises et explorées sur la composition de cette hypothétique matière noire : gaz moléculaire, étoiles mortes, naines brunes en grand nombre, trous noirs, etc. La matière noire aurait pourtant une abondance au moins cinq fois plus importante que la matière baryonique, pour constituer environ 24 %[2] de la densité d'énergie totale de l'Univers observable[3], selon les modèles de formation et d'évolution des galaxies, ainsi que les modèles cosmologiques. Premiers indices[modifier | modifier le code]

Corps noir Un article de Wikipédia, l'encyclopédie libre. En physique, un corps noir désigne un objet idéal dont le spectre électromagnétique ne dépend que de sa température. Le nom corps noir a été introduit par le physicien Gustav Kirchhoff en 1862. Le modèle du corps noir permit à Max Planck de découvrir la quantification des interactions électromagnétiques, qui fut un des fondements de la physique quantique. Le modèle du corps noir[modifier | modifier le code] Le corps noir est un objet idéal qui absorberait toute l'énergie électromagnétique qu'il recevrait, sans en réfléchir ni en transmettre. La lumière étant un rayonnement électromagnétique, elle est absorbée totalement et l'objet éclairé devrait donc apparaître noir, d'où son nom. L'objet réel qui se rapproche le plus de ce modèle est l'intérieur d'un four. Chaque paroi du four émet et absorbe du rayonnement. Les lois du corps noir[modifier | modifier le code] Loi de Planck[modifier | modifier le code] avec en W.m-2.sr-1.m-1.

Énergie sombre Un article de Wikipédia, l'encyclopédie libre. L'énergie sombre ne doit pas être confondue avec la matière sombre qui, contrairement à l'énergie sombre, ne remplit pas uniformément l'univers et qui interagit normalement (forces attractives) avec la gravitation. Naissance de la notion d'énergie sombre[modifier | modifier le code] L'expression dark energy (énergie sombre) a été citée pour la première fois dans un article de Huterer et Turner[1] en 1998, quelques mois après la découverte de l'accélération de l'expansion de l'Univers[DE 1]. Du fait de sa nature répulsive, l'énergie sombre a tendance à accélérer l'expansion de l'Univers, plutôt que la ralentir, comme le fait la matière « normale ». Mais l'idée d'une composante accélératrice, invisible et diffuse, de l'univers est plus ancienne[DE 1]. Nature de l'énergie sombre[modifier | modifier le code] La nature exacte de l'énergie sombre fait largement partie du domaine de la spéculation. Constante cosmologique[modifier | modifier le code] .

Vide quantique Un article de Wikipédia, l'encyclopédie libre. Pour les articles homonymes, voir Vide. Pour le physicien le vide a toujours été une notion extrêmement difficile à définir. Inégalité d'Heisenberg[modifier | modifier le code] Les inégalités d'Heisenberg (plus connues sous le nom de principe d'incertitude) sont une conséquence directe de la dualité onde-corpuscule. où ℏ est la Constante de Planck normalisée. Fluctuation du vide et création de paires de particules[modifier | modifier le code] L'équation la plus célèbre de la physique traduit l'équivalence entre masse et énergie. Fluctuation du vide et force de Casimir[modifier | modifier le code] La manifestation expérimentale la plus flagrante des fluctuations du vide est la force de Casimir. Fluctuation du vide et décalage de Lamb[modifier | modifier le code] Le premier effet observé des fluctuations du vide est le dédoublement des raies d'émissions dans les spectres atomiques. Fluctuation du vide et rayonnement[modifier | modifier le code]

hebus 1417127391 9362 Théorie quantique des champs Un article de Wikipédia, l'encyclopédie libre. Les photons QFT ne sont pas considérés comme des « petites boules de billard » ils sont considérés comme des champs quantiques – nécessairement coupés en ondulations dans un champ, ou des « excitations », qui 'ressemblent' à des particules. Le fermion, comme l'électron, peut seulement être décrit comme des ondulations/excitations dans un champ, quand chaque sorte de fermion a son propre champ. En résumé, la visualisation classique de « tout est particules et champ », dans la théorie quantique des champs, se transforme en « tout est particules », puis « tout est champs ». à la fin, les particules sont considérées comme des états excités d'un champ (champ quantique). Historique[modifier | modifier le code] La théorie quantique des champs prend ses origines dans les années 1920 lorsqu'est survenu le problème de la création d'une théorie quantique du champ électromagnétique. Champs quantiques[modifier | modifier le code] (Le facteur Par exemple,

Le CERN en bref Le CERN, l’Organisation européenne pour la recherche nucléaire, est l’un des plus grands et des plus prestigieux laboratoires scientifiques du monde. Il a pour vocation la physique fondamentale, la découverte des constituants et des lois de l’Univers. Il utilise des instruments scientifiques très complexes pour sonder les constituants ultimes de la matière : les particules fondamentales. Les instruments qu’utilise le CERN sont des accélérateurs et des détecteurs de particules. Fondé en 1954, le CERN est situé de part et d’autre de la frontière franco-suisse, près de Genève. Le nom Lorsque le Laboratoire vit officiellement le jour, en 1954, le Conseil provisoire fut dissous et la nouvelle organisation fut baptisée Organisation européenne pour la Recherche nucléaire. Le CERN se consacre à la recherche scientifique fondamentale.

Mer de Dirac Un article de Wikipédia, l'encyclopédie libre. La Mer de Dirac est un concept métaphorique représentant le vide quantique, proposé par le physicien britannique Paul Dirac (1902-1984). Figure 1 : Le vide est représenté par une « mer » allant d'une profondeur infinie d'énergie négative jusqu'à une valeur maximale considérée comme le zéro de l'énergie. Description[modifier | modifier le code] Paul Dirac suggéra que l'on considère le vide quantique non comme un milieu désertique, mais comme une mer d'électrons de profondeur infinie où chaque électron occuperait un niveau d'énergie propre, s'étalant sur une échelle allant de l'infini négatif jusqu'à une certaine valeur maximale. Un « trou » dans l'énergie négative de la mer de Dirac, c'est-à-dire une absence d'énergie négative, correspond à un état d'énergie positive rempli, les deux états se convertissant respectivement en une paire positron-électron lors d'une fluctuation d'énergie du vide. Voir aussi[modifier | modifier le code]

Les scientifiques ont-ils enfin réussi à dénicher de la matière noire ? Des physiciens affirment, en s’appuyant sur les premiers résultats obtenus par une expérience menée à bord de la Station spatiale internationale (ISS), qu’ils ont pu observer un excès d'antimatière dans le flux des rayons cosmiques. Après des années de recherches incessantes, les physiciens pourraient finalement réussir à mettre la main sur la mystérieuse matière noire invisible qui formerait près d'un quart de l'Univers (26,8% selon les données fournies par le satellite Planck). Grâce aux premiers résultats dévoilés mercredi et obtenus au cours d'une expérience de 18 mois menée à bord de la Station spatiale internationale (ISS), les chercheurs expliquent avoir observé l'existence d'un excès d'antimatière, d'origine inconnue, dans le flux des rayons cosmiques qui pourrait avoir résulté de l'annihilation de matière noire. Avez-vous déjà partagé cet article? Partager sur Facebook Partager sur Twitter D'autres expériences pour en savoir plus

Related: