background preloader

Quark

Quark
A quark (/ˈkwɔrk/ or /ˈkwɑrk/) is an elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei.[1] Due to a phenomenon known as color confinement, quarks are never directly observed or found in isolation; they can be found only within hadrons, such as baryons (of which protons and neutrons are examples), and mesons.[2][3] For this reason, much of what is known about quarks has been drawn from observations of the hadrons themselves. The quark model was independently proposed by physicists Murray Gell-Mann and George Zweig in 1964.[5] Quarks were introduced as parts of an ordering scheme for hadrons, and there was little evidence for their physical existence until deep inelastic scattering experiments at the Stanford Linear Accelerator Center in 1968.[6][7] Accelerator experiments have provided evidence for all six flavors. Classification[edit]

Supernova A supernova (abbreviated SN, plural SNe after "supernovae") is a stellar explosion that is more energetic than a nova. It is pronounced /ˌsuːpəˈnoʊvə/ with the plural supernovae /ˌsuːpəˈnoʊviː/ or supernovas. Supernovae are extremely luminous and cause a burst of radiation that often briefly outshines an entire galaxy, before fading from view over several weeks or months. During this interval a supernova can radiate as much energy as the Sun is expected to emit over its entire life span.[1] The explosion expels much or all of a star's material[2] at a velocity of up to 30,000 km/s (10% of the speed of light), driving a shock wave[3] into the surrounding interstellar medium. This shock wave sweeps up an expanding shell of gas and dust called a supernova remnant. Nova means "new" in Latin, referring to what appears to be a very bright new star shining in the celestial sphere; the prefix "super-" distinguishes supernovae from ordinary novae which are far less luminous. Discovery[edit]

Subatomic particle In the physical sciences, subatomic particles are particles smaller than atoms.[1] (although some subatomic particles have mass greater than some atoms). There are two types of subatomic particles: elementary particles, which according to current theories are not made of other particles; and composite particles.[2] Particle physics and nuclear physics study these particles and how they interact.[3] In particle physics, the concept of a particle is one of several concepts inherited from classical physics. Interactions of particles in the framework of quantum field theory are understood as creation and annihilation of quanta of corresponding fundamental interactions. Classification[edit] By statistics[edit] By composition[edit] The elementary particles of the Standard Model include:[5] Various extensions of the Standard Model predict the existence of an elementary graviton particle and many other elementary particles. By mass[edit] All composite particles are massive. Other properties[edit]

Gamma-ray burst Artist's illustration showing the life of a massive star as nuclear fusion converts lighter elements into heavier ones. When fusion no longer generates enough pressure to counteract gravity, the star rapidly collapses to form a black hole. Theoretically, energy may be released during the collapse along the axis of rotation to form a gamma-ray burst. Gamma-ray bursts (GRBs) are flashes of gamma rays associated with extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe.[1] Bursts can last from ten milliseconds to several minutes. Most observed GRBs are believed to consist of a narrow beam of intense radiation released during a supernova or hypernova as a rapidly rotating, high-mass star collapses to form a neutron star, quark star, or black hole. History[edit] Positions on the sky of all gamma-ray bursts detected during the BATSE mission. Counterpart objects as candidate sources[edit]

Fundamental interaction Fundamental interactions, also called fundamental forces or interactive forces, are modeled in fundamental physics as patterns of relations in physical systems, evolving over time, that appear not reducible to relations among entities more basic. Four fundamental interactions are conventionally recognized: gravitational, electromagnetic, strong nuclear, and weak nuclear. Everyday phenomena of human experience are mediated via gravitation and electromagnetism. The strong interaction, synthesizing chemical elements via nuclear fusion within stars, holds together the atom's nucleus, and is released during an atomic bomb's detonation. The weak interaction is involved in radioactive decay. (Speculations of a fifth force—perhaps an added gravitational effect—remain widely disputed.) In modern physics, gravitation is the only fundamental interaction still modeled as classical/continuous (versus quantum/discrete). Overview of the fundamental Interaction[edit] The interactions[edit]

Hypernova Eta Carinae, in the constellation of Carina, one of the nearer candidates for a future hypernova A hypernova (pl. hypernovae) is a type of supernova explosion with an energy substantially higher than that of standard supernovae. An alternative term for most hypernovae is "superluminous supernovae" (SLSNe). Such explosions are believed to be the origin of long-duration gamma-ray bursts.[1] Just like supernovae in general, hypernovae are produced by several different types of stellar explosion: some well modelled and observed in recent years, some still tentatively suggested for observed hypernovae, and some entirely theoretical. The word collapsar, short for collapsed star, was formerly used to refer to the end product of stellar gravitational collapse, a stellar-mass black hole. History of the term[edit] Before the 1990s, the term "hypernova" was used sporadically to describe the theoretical extremely energetic explosions of extremely massive population III stars. Gamma-ray bursts[edit]

Flavour (particle physics) In particle physics, flavour or flavor refers to a species of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with flavour quantum numbers that are assigned to all subatomic particles, including composite ones. For hadrons, these quantum numbers depend on the numbers of constituent quarks of each particular flavour. In atomic physics the principal quantum number of an electron specifies the electron shell in which it resides, which determines the energy level of the whole atom. In an analogous way, the five flavour quantum numbers of a quark specify which of six flavours (u, d, s, c, b, t) it has, and when these quarks are combined this results in different types of baryons and mesons with different masses, electric charges, and decay modes. If there are two or more particles which have identical interactions, then they may be interchanged without affecting the physics. Jump up ^ See table in S.

White dwarf Artist's concept of white dwarf aging. A white dwarf, also called a degenerate dwarf, is a stellar remnant composed mostly of electron-degenerate matter. They are very dense; a white dwarf's mass is comparable to that of the Sun, and its volume is comparable to that of the Earth. White dwarfs are thought to be the final evolutionary state of all stars whose mass is not high enough to become a neutron star—over 97% of the stars in the Milky Way.[5], §1. The material in a white dwarf no longer undergoes fusion reactions, so the star has no source of energy, nor is it supported by the heat generated by fusion against gravitational collapse. A white dwarf is very hot when it is formed, but since it has no source of energy, it will gradually radiate away its energy and cool. Discovery[edit] I was visiting my friend and generous benefactor, Prof. The spectral type of 40 Eridani B was officially described in 1914 by Walter Adams.[14] The companion of Sirius, Sirius B, was next to be discovered.

Elementary particle In particle physics, an elementary particle or fundamental particle is a particle whose substructure is unknown, thus it is unknown whether it is composed of other particles.[1] Known elementary particles include the fundamental fermions (quarks, leptons, antiquarks, and antileptons), which generally are "matter particles" and "antimatter particles", as well as the fundamental bosons (gauge bosons and Higgs boson), which generally are "force particles" that mediate interactions among fermions.[1] A particle containing two or more elementary particles is a composite particle. Everyday matter is composed of atoms, once presumed to be matter's elementary particles—atom meaning "indivisible" in Greek—although the atom's existence remained controversial until about 1910, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of energy.[1][2] Soon, subatomic constituents of the atom were identified. Overview[edit] Main article: Standard Model

Neutron star Neutron stars contain 500,000 times the mass of the Earth in a sphere with a diameter no larger than that of Brooklyn, United States A neutron star is a type of stellar remnant that can result from the gravitational collapse of a massive star during a Type II, Type Ib or Type Ic supernova event. Neutron stars are the densest and tiniest stars known to exist in the universe; although having only the diameter of about 10 km (6 mi), they may have a mass of several times that of the Sun. Neutron stars probably appear white to the naked eye. Neutron stars are the end points of stars whose inert core's mass after nuclear burning is greater than the Chandrasekhar limit for white dwarfs, but whose mass is not great enough to overcome the neutron degeneracy pressure to become black holes. The discovery of pulsars in 1967 suggested that neutron stars exist. Neutron star collision Formation[edit] Properties[edit] Gravitational light deflection at a neutron star. Given current values Structure[edit]

Color confinement The color force favors confinement because at a certain range it is more energetically favorable to create a quark-antiquark pair than to continue to elongate the color flux tube. This is analoguous to the behavior of an elongated rubber-band. An animation of color confinement. Energy is supplied to the quarks, and the gluon tube elongates until it reaches a point where it "snaps" and forms a quark-antiquark pair. Color confinement, often simply called confinement, is the phenomenon that color charged particles (such as quarks) cannot be isolated singularly, and therefore cannot be directly observed.[1] Quarks, by default, clump together to form groups, or hadrons. The two types of hadrons are the mesons (one quark, one antiquark) and the baryons (three quarks). Origin[edit] The reasons for quark confinement are somewhat complicated; no analytic proof exists that quantum chromodynamics should be confining. Models exhibiting confinement[edit] Models of fully screened quarks[edit] Quarks

Magnetar Artist's conception of a magnetar, with magnetic field lines. Description[edit] Like other neutron stars, magnetars are around 20 kilometres (10 mi) in diameter and have a greater mass than the Sun. The density of the interior of a magnetar is such that a thimble full of its substance would have a mass of over 100 million tons.[1] Magnetars are differentiated from other neutron stars by having even stronger magnetic fields, and rotating comparatively slowly, with most magnetars completing a rotation once every one to ten seconds,[7] compared to less than one second for a typical neutron star. This magnetic field gives rise to very strong and characteristic bursts of X-rays and gamma rays. Magnetic field[edit] As described in the February 2003 Scientific American cover story, remarkable things happen within a magnetic field of magnetar strength. Origins of magnetic fields[edit] Formation[edit] 1979 discovery[edit] Recent discoveries[edit] The anti-glitch issue[edit] Known magnetars[edit]

Quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe the force of gravity according to the principles of quantum mechanics. Although a quantum theory of gravity is needed in order to reconcile general relativity with the principles of quantum mechanics, difficulties arise when one attempts to apply the usual prescriptions of quantum field theory to the force of gravity.[3] From a technical point of view, the problem is that the theory one gets in this way is not renormalizable and therefore cannot be used to make meaningful physical predictions. As a result, theorists have taken up more radical approaches to the problem of quantum gravity, the most popular approaches being string theory and loop quantum gravity.[4] Strictly speaking, the aim of quantum gravity is only to describe the quantum behavior of the gravitational field and should not be confused with the objective of unifying all fundamental interactions into a single mathematical framework.

Pulsar The precise periods of pulsars makes them useful tools. Observations of a pulsar in a binary neutron star system were used to indirectly confirm the existence of gravitational radiation. The first extrasolar planets were discovered around a pulsar, PSR B1257+12. Certain types of pulsars rival atomic clocks in their accuracy in keeping time. History of observation[edit] Discovery[edit] The first pulsar was observed on November 28, 1967, by Jocelyn Bell Burnell and Antony Hewish.[1][2][3] They observed pulses separated by 1.33 seconds that originated from the same location on the sky, and kept to sidereal time. The word "pulsar" is a contraction of "pulsating star",[7] and first appeared in print in 1968: An entirely novel kind of star came to light on Aug. 6 last year and was referred to, by astronomers, as LGM (Little Green Men). Milestones[edit] In 1974, Joseph Hooton Taylor, Jr. and Russell Hulse discovered for the first time a pulsar in a binary system, PSR B1913+16. Nomenclature[edit]

Graviton Theory[edit] The three other known forces of nature are mediated by elementary particles: electromagnetism by the photon, the strong interaction by the gluons, and the weak interaction by the W and Z bosons. The hypothesis is that the gravitational interaction is likewise mediated by an – as yet undiscovered – elementary particle, dubbed as the graviton. In the classical limit, the theory would reduce to general relativity and conform to Newton's law of gravitation in the weak-field limit.[6][7][8] Gravitons and renormalization[edit] When describing graviton interactions, the classical theory (i.e., the tree diagrams) and semiclassical corrections (one-loop diagrams) behave normally, but Feynman diagrams with two (or more) loops lead to ultraviolet divergences; that is, infinite results that cannot be removed because the quantized general relativity is not renormalizable, unlike quantum electrodynamics. Comparison with other forces[edit] Gravitons in speculative theories[edit] See also[edit]

Related: