background preloader

Liste de particules

Liste de particules
Un article de Wikipédia, l'encyclopédie libre. Cet article est une liste de particules en physique des particules, incluant les particules élémentaires actuellement connues et hypothétiques, ainsi que les particules composites qui peuvent être construites à partir d'elles. Particules élémentaires[modifier | modifier le code] Une particule élémentaire est une particule ne possédant aucune structure interne mesurable, c’est-à-dire qu'elle n'est pas composée d'autres particules. Les particules élémentaires peuvent être classées selon leur spin : les fermions possédant un spin demi-entier qui constituent la matière de l'univers,les bosons ayant un spin entier et qui donnent naissance aux forces agissant entre les particules de matière. Modèle standard[modifier | modifier le code] Fermions (spin demi-entier)[modifier | modifier le code] Structure du proton : 2 quarksup et un quark down. Les fermions possèdent un spin demi-entier ; pour tous les fermions élémentaires connus, il s’agit de ½.

Le boson de Higgs, porte ouverte sur une nouvelle physique | Mariette Le Roux | Découvertes Mais plus ils en apprennent au sujet du boson, plus il ressemble au portrait esquissé pour la première fois voici tout juste 50 ans. Et moins les scientifiques ont de chances d'expliquer les questions laissées en suspens par le «Modèle standard» qui définit actuellement les lois de la physique: matière noire, énergie sombre, gravité, etc. Insaisissable, car extrêmement instable, le boson de Higgs est considéré comme la clef de voûte de la structure fondamentale de la matière, la particule élémentaire qui donne leur masse à de nombreuses autres. Son existence avait été postulée pour la première fois en 1964 par Peter Higgs, François Englert et Robert Brout, aujourd'hui décédé. À partir de 2015, les physiciens travaillant au LHC (Grand collisionneur de hadrons) près de Genève vont mener de nouvelles expériences avec une puissance de feu presque doublée. «Cela pourrait nous aider à lever de nombreux autres obstacles auxquels la physique se heurte actuellement». Physique 2.0 ?

Particule élémentaire Un article de Wikipédia, l'encyclopédie libre. Le modèle standard[modifier | modifier le code] Particules élémentaires du modèle standard[modifier | modifier le code] Fermions[modifier | modifier le code] Leptons[modifier | modifier le code] Parmi les douze fermions du modèle standard, six ne sont pas soumis à l'interaction forte et ne connaissent que l'interaction faible et l'interaction électromagnétique : ce sont les leptons. Quarks[modifier | modifier le code] Parmi les douze fermions du modèle standard, six seulement connaissent l'interaction forte au même titre que l'interaction faible et l'interaction électromagnétique : ce sont les quarks. L'interaction forte est responsable du confinement des quarks, à cause duquel il est impossible d'observer une particule élémentaire ou composée dont la charge de couleur résultante n'est pas « blanche ». rouge + vert + bleu = blancrouge + antirouge = blancvert + antivert = blancbleu + antibleu = blanc Bosons[modifier | modifier le code]

Mouvement d'un particule chargée dans un champ électromagnétique (animation Flash) Manipulons la figure... Une particule chargée est soumise à l'action d'un champ électrique et d'un champ magnétique uniformes et indépendants du temps, ainsi qu'à une force de frottement "fluide", de coefficient k. L'équation générale de ce mouvement est de la forme : Panneaux de contrôle Une série de curseurs permettent de faire varier : la vitessse initiale V0 (ses 3 composantes) le coefficient de frottement k la masse m la charge q le champ magnétique B//Ox le champ électrique E//Oz Appuyer sur pour une remise à zéro. Le curseur circulaire est là pour faire varier l'angle de vue. 3 boutons permettent de choisir un plan de base. Un petit curseur permet de modifier la cadence de l'animation (nombre d'itérations par image) et de l'adapter à la puissance de l'ordinateur. Enfin les deux boutons permettent de réinitialiser ou de stopper/redémarrer l'animation. Un rafraîchissement de l'écran s'opère automatiquement de temps en temps. Manipulation Champ électrique E seul Champ magnétique B seul

Spin (propriété quantique) Un article de Wikipédia, l'encyclopédie libre. Le spin est, en physique quantique, une des propriétés des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Historique[modifier | modifier le code] La genèse du concept de spin fut l'une des plus difficiles de l'histoire de la physique quantique au début du XXe siècle[1]. Le spin a d'abord été interprété comme un degré de liberté supplémentaire, s'ajoutant aux trois degrés de liberté de translation de l'électron : son moment cinétique intrinsèque (ou propre). Enfin, c'est en théorie quantique des champs que le spin montre son caractère le plus fondamental. Le spin du photon a été mis en évidence expérimentalement par Râman et Bhagavantam en 1931[6].

0 - Les particules élémentaires (proton, électron, neutron) Le proton Le proton a été découvert par le physicien britannique Ernest Rutherford en 1919. Le proton est une particule chargée positivement. Chaque proton a une charge de 1+. Le proton est situé dans le noyau de l’atome. La masse réelle du proton est d’environ 1,673 x 10-17 kg, ce qui est un peu moins que la masse du neutron. Contrairement aux électrons, les protons ne peuvent pas être éjectés de l'atome. En effet, dans le tableau périodique, chaque atome possède son propre numéro, le numéro atomique, associé à son nombre de protons. Le numéro atomique est le numéro que l’on attribue à chaque atome. L’électron L’électron a été découvert par le physicien britannique J.J. L’électron est une particule chargée négativement. Chaque électron a une charge de 1-. La masse réelle de l’électron est d’environ 9,11 x 10-31 kg. Dans un atome neutre, on dénombre autant d’électrons que de protons. Le neutron Le neutron a été découvert par le physicien britannique James Chadwick en 1932. Résumé

Brevet secret us pour transmettre gratuitement de l'electricité sans aucun cable ni central "Power Beaming System." United States Patent Number: 5,068,669 Date of Patent: November 26, 1991 Inventor: Peter KOERT and James Assignee: APTI, Inc., Los Angeles, Ca. Ce brevet décrit un système permettant de transmettre, par ondes électromagnétiques, l'énergie nécessaire à un équipement situé à distance. L'invention consiste à émettre un signal électromagnétique à très haute fréquence, au moins 10 GHz selon KOERT, en direction de l'appareil à alimenter, ce dernier étant équipé d'un ensemble d'antennes de réception pour recevoir et redresser le signal en une source d'énergie DC. testé ce concept au début des années 90 en maintenant en vol, pendant 10.000 heures à 80.000 pieds et sans carburant, un petit avion alimenté par l'énergie électrique DC redressée à partir d'un rayonnement micro-onde dans l'axe duquel il évoluait. Figure 14. technique de transport d'énergie Source: U.S. "Power Beaming System with Printed Circuit Radiating Elements having Resonating Cavities." Date of Patent: June 8, 1993

Des neutrinos observés en pleine transformation Des neutrinos observés en pleine transformation Surnommées « particules fantômes » en raison de leurs interactions rarissimes avec la matière, les neutrinos sont très difficiles à observer. Or une collaboration internationale de physiciens vient non seulement de le faire mais surtout de détecter pour la première fois la transformation, ou « oscillation quantique de saveur », d’une forme de neutrinos particulière en une autre. Un véritable exploit. Saveur Les neutrinos sont des particules principalement issues du coeur des étoiles. L’expérience qui a permis cette observation est installée sur deux sites différents. Oscillation Entre janvier 2010 et mars 2011, Super-Kamiokande a ainsi détecté 88 neutrinos créés par l’accélérateur de particules situé à Tokai. C’est dans l’observation expérimentale de l’apparition de neutrinos électroniques que réside la différence avec les travaux précédents. L’expérience japonaise permet également de confirmer que les neutrinos ont une masse. La Recherche

Ondes ou particules? | Jean-François Cliche | La science au quotidien Partons d'une chose que tout le monde connaît: la lumière. La lumière, comme on l'a souvent vu dans cette rubrique, est une onde électromagnétique, c'est-à-dire de l'énergie électrique et magnétique qui se propage dans l'espace, un peu comme une vague à la surface de l'eau. Quand une charge électrique est accélérée ou change de direction (si on «brasse» un électron, par exemple), cela dérange le champ électromagnétique en un point de l'Univers et crée ainsi une «vague électromagnétique» - à la manière d'un caillou qui, jeté à l'eau, en dérange la surface. De la même façon, on croit que l'accélération de toute masse aurait un effet un peu similaire, en créant des ondes gravitationnelles. Celles-ci seraient une alternance de compression et d'étirement de l'espace-temps. Invraissemblances Maintenant, dans l'univers en apparence un peu bizarre qu'est la mécanique quantique, il arrive que des ondes se comportent comme des particules, et vice-versa. Des extrêmes Histoire à suivre, donc...

neutrino muonique Définition, traduction, prononciation, anagramme et synonyme sur le dictionnaire libre Wiktionnaire. Français[modifier | modifier le wikicode] Étymologie[modifier | modifier le wikicode] Composé de neutrino et muonique. Locution nominale[modifier | modifier le wikicode] neutrino muonique masculin (Physique) En physique des particules, particule élémentaire, un type de neutrino, de charge électrique nulle et d'une masse presque égale à la moitié de celle de l'électron. Traductions[modifier | modifier le wikicode] Hyperonymes[modifier | modifier le wikicode] neutrino Voir aussi[modifier | modifier le wikicode] Neutrino sur Wikipédia Des neutrinos en flagrant délit de métamorphose -- Science et Technologie Pour la première fois, les physiciens de l'expérience T2K au Japon, parmi lesquels ceux du CNRS (1) et du CEA/Irfu, annoncent avoir très probablement détecté une transformation de neutrinos muons en neutrinos électrons. L'observation - probable à plus de 99% - de ce phénomène constituerait une découverte majeure pour la compréhension de la physique des particules élémentaires et ouvrirait la voie à de nouvelles études sur l'asymétrie entre la matière et l'antimatière. Les neutrinos existent sous trois formes ou « saveurs » : les neutrinos électrons, muons et tau. L'expérience T2K, située au Japon, étudie le mécanisme d'oscillation de ces particules, c'est-à-dire la faculté qu'elles ont à se transformer en une autre saveur dans leurs déplacements. Vue du détecteur géant Super-Kamiokande, qui avait déjà été utilisé pour étudier les neutrinos « naturels" provenant du soleil et ceux produits par les rayons cosmiques dans la haute atmosphère. Notes : Source: CNRS

Elementary particle In particle physics, an elementary particle or fundamental particle is a particle whose substructure is unknown, thus it is unknown whether it is composed of other particles.[1] Known elementary particles include the fundamental fermions (quarks, leptons, antiquarks, and antileptons), which generally are "matter particles" and "antimatter particles", as well as the fundamental bosons (gauge bosons and Higgs boson), which generally are "force particles" that mediate interactions among fermions.[1] A particle containing two or more elementary particles is a composite particle. Everyday matter is composed of atoms, once presumed to be matter's elementary particles—atom meaning "indivisible" in Greek—although the atom's existence remained controversial until about 1910, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of energy.[1][2] Soon, subatomic constituents of the atom were identified. Overview[edit] Main article: Standard Model

une ville flottante complètement autonome pouvant recevoir jusqu'à 50.000. Avec le niveau des mers qui devrait augmenter considérablement au cours du prochain siècle en raison du changement climatique , un grand nombre de personnes vivant dans les zones basses devrons être déplacées de leurs foyers . L'Architecte Vincent Callebaut a mis au point une solution possible pour ces réfugiés du changement climatique sous la forme de la "Lilypad" concept - une ville flottante complètement autonome pouvant recevoir jusqu'à 50.000. Avec une forme inspirée du nénuphars Victoria, la double peau de la variable "Ecopolis" serait faite de fibres de polyester recouvert d'une couche de dioxyde de titane (TiO2), qui réagissent avec les rayons ultraviolets et absorber la pollution atmosphérique par un effet photocatalytique de la même manière que le purificateur d'air de béton et de pavés, nous avons examiné l'an dernier.

Related: