background preloader

Gel Electrophoresis Virtual Lab / Learn Genetics

Gel Electrophoresis Virtual Lab / Learn Genetics
Related:  IB

PCR Virtual Lab / Learn Genetics Primers are short pieces of DNA that are made in a laboratory. Since they're custom built, primers can have any sequence of nucleotides you'd like. In a PCR experiment, two primers are designed to match to the segment of DNA you want to copy. Primers are also necessary because DNA polymerase can't attach at just any old place and start copying away. DNA Polymerase is a naturally occurring complex of proteins whose function is to copy a cell's DNA before it divides in two. The DNA polymerase in our bodies breaks down at temperatures well below 95 °C (203 °F), the temperature necessary to separate two complementary strands of DNA in a test tube. Nucleotides are the building blocks that DNA molecules are made of.

Genetics Course|Biology Course Summary This course is based on 7.03 Genetics, Fall 2004 made available by Massachusetts Institute of Technology: MIT OpenCourseWare under the Creative Commons BY-NC-SA license. This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease. Reading Material 1. Course Material Not available. Other Resources 1. Software

7.6 Molecular Structure and Polarity | Chemistry Learning Objectives By the end of this section, you will be able to: Predict the structures of small molecules using valence shell electron pair repulsion (VSEPR) theoryExplain the concepts of polar covalent bonds and molecular polarityAssess the polarity of a molecule based on its bonding and structure Thus far, we have used two-dimensional Lewis structures to represent molecules. However, molecular structure is actually three-dimensional, and it is important to be able to describe molecular bonds in terms of their distances, angles, and relative arrangements in space (Figure 1). Valence shell electron-pair repulsion theory (VSEPR theory) enables us to predict the molecular structure, including approximate bond angles around a central atom, of a molecule from an examination of the number of bonds and lone electron pairs in its Lewis structure. VSEPR theory predicts the arrangement of electron pairs around each central atom and, usually, the correct arrangement of atoms in a molecule. 1.

Reviewing DNA DNA is made of a long sequence of smaller units strung together. There are four basic types of unit: A, T, G, and C. These letters represents the type of base each unit carries: adenine, thymine, guanine, and cytosine. The sequence of these bases encodes instructions. Getting your practical programme together - OSC IB Blogs Hopefully, by now you will have had time to reflect on the new course and start thinking about your practical programme (PSOW). It is my intention of this blog post ot give you some ideas of things you can add to your PSOW. Are you aware of the ten mandatory labs / skills that you are expected to teach your students? These are listed in the guide ….. but they are not very clear. Hang on, I hear you say – you said ten mandatory skills – but I can count twelve.

Two Simple and Inexpensive Laboratory Exercises for Teaching Agarose Gel Electrophoresis and DNA Fingerprinting + Author Affiliations Summary One of the most frequently used tools in plant biotechnology, which includes genomics and proteomics, is gel electrophoresis. Our experience with middle and high school students as well as teachers and undergraduate students is that they have very little, if any, hands-on experience with this technique. These exercises were developed to demonstrate the principles of electrophoresis and DNA fingerprinting in middle and high school and university laboratories with minimal expense and equipment. The experiments have been tested by middle and high school students, as well as by teachers, and undergraduate and graduate students. Additional index words. Biotechnology is a rapidly evolving field of science that combines cellular and molecular biology with applications in genetic engineering and recombinant DNA technology. A concern among many is that a lack of skilled human resources is a major constraint to development of biotechnology industries. Buffers Expt. 1.

3-D Biological Molecules Listed below are links to pages containing 3-dimensional displays of models of molecules of Biological interest. These may be moved in an intuitive way using the computer mouse or touchscreen. In the explanatory text are links which highlight features of the molecule or give extra information. These units are now based on HTML5 and javascript, so they should be more accessible from most PCs and tablets, including iPads. On Windows PCs, best results are obtained using Firefox or Chrome. Some files have been converted to be compatible with mobiles and tablets which have a narrower screen, incompatible with the display format used on desktop/laptop machine. Please let me know if these are (or are not) working on your system! More molecules to be added in the near future Web references and useful websites The Protein Data Bank (PDB; ) is the single worldwide archive of structural data of biological macromolecules, now containing more than 100,000 structures.

CORE_Chapter Fourteen - Gas Phase, Solubility, Complex Ion Equilibria NO2N2O4 Equilibrium This animation shows the effect of change the volume of a gas phase equilibrium mixture where the numbers of reactant and product molecules are different. CaO CaCO3 Equilibrium This animation shows a solid and gas equilibrium system and the effect adding additional solid on the position of the equilibrium. Energy of Activation This animation shows the change in the number of molecules with energy greater than the energy of activation as the temperature increases. H2 I2 Equilibrium This animation shows the effect of change the volume of a gas phase equilibrium mixture where the numbers of reactant and product molecules are the same. N2 O2 Equilibrium This animation shows a gas phase equilibrium system. Solubility of AgCl This animation shows the equilibrium between an ionic solid and the ions in solution for slightly soluble AgCl. Ksp of Mg(OH)2 and Ca(OH)2 Lab Document This is the document for the determination of the Ksp of Ca(OH)2 and Mg(OH)2 lab.

IB Biology/Chemistry: Error/Uncertainty IB Chemistry,Uncertainty, Error Analysis, Standard Deviation Uncertainty Calculation for Rate and Concentration of reaction. Rate = 1/time, Time for X to disappear. ( Iodine Clock Reaction) 3 Methods for Uncertainty Calculation for Rate (0.10M) KI. Average time is (5.28 + 4.75 + 4.47) / 3 = 4.83 1) % Uncertainty Method Uncertainty time = Uncertainty stop watch + reaction time, ( 0.01 + 0.09 ) = ( 0.10 )Time = 4.83 ±( 0.10 ) 2) Max-min range Method Uncertainty time = (Max time - Min time)/2, = ( 5.28 - 4.47 )/2 = 0.41Time = 4.83 ±0.41 1) %Uncertainty Method Uncertainty time = (4.83 ± 0.10) Rate = 1/ time, 1/4.83 = 0.207 2) Max-min range Method Uncertainty time = ( 4.83 ± 0.41) Rate = 1/time, 1/4.83 = 0.207 %Uncertainty time = (0.1/4.83) x100 %=2.07 %Uncertainty Rate = %Uncertainty time %Uncertainty Rate = 2.07% Rate = 0.207 ± 2.07 % Rate = 0.207 ± 0.004 % Uncertainty time = (0.41/4.83) x 100% = 8.48% % Uncertainty Rate = % Uncertainty time %Uncertainty Rate = 8.48% Rate = 0.207 ± 8.48% Rate = 0.207 ± 0.017 1.