background preloader

Welcome to the ThinkMath! Website

Welcome to the ThinkMath! Website

common core resources /mathematical practice standards / Inside Mathematics illuminates the mathematical practice standards with video excerpts of mathematics lessons. Just as with content standards, not every lesson reflects all elements of the individual standards for mathematical practice. By representing examples from different classrooms for each standard, we want to emphasize how many different ways teachers may enact these standards for mathematical practice in their classrooms, with their particular learners. This alignment was developed in collaboration with educators from the Silicon Valley Mathematics Initiative and the Charles A. untitled Using Writing In Mathematic Using Writing In Mathematics This strand provides a developmental model for incorporating writing into a math class. The strand includes specific suggestions for managing journals, developing prompts for writing, and providing students with feedback on their writing. In addition, the site includes two sample lessons for introducing students to important ideas related to writing about their mathematical thinking. Teaching Strategies For Incorporating Writing Into Math Class: Moving From Open-Ended Questions To Math Concepts Starting Out Gently with Affective, Open-Ended Prompts Writing about thinking is challenging. Begin with affective, open-ended questions about students' feelings. Have students write a "mathography"-a paragraph or so in which they describe their feelings about and experiences in math, both in and out of school. Encourage students to keep their pencils moving. Try requiring 20 words per answer, even if they have to copy the same words again to reach 20. 1. 2. 3. 1. 2. 1.

illustrativemathematics Illustrated Standards Count to 100 by ones and by tens. (see illustrations) Count forward beginning from a given number within the known sequence (instead of having to begin at 1). Write numbers from 0 to 20. Understand the relationship between numbers and quantities; connect counting to cardinality. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. Understand that the last number name said tells the number of objects counted. Understand that each successive number name refers to a quantity that is one larger. Count to answer “how many?” Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. Compare two numbers between 1 and 10 presented as written numerals. Fluently add and subtract within 5. Compose simple shapes to form larger shapes.

Academics / Eight Mathematical Practices Explanation of the Eight Mathematical Practices The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important “processes and proficiencies” with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The Eight Practices are: Websites for explanations Check out this list for a specific description of each. Here's another website with great resources. But my favorite website for the Eight MPs? Posters to put in your classroom But really. So, what are the MPs? Let’s say I, Amy, ask Shaun to go get me a sandwich for lunch. 1. 2. 3. 4. 5. 6. 7. 8. What a good friend! Checklist to keep records A Really Clear Video to Explain the Eight MPs To get information about MP 1, go to 3:16 in the video. MPs in Kid Friendly Language Classroom Sneak Peeks:

ALGORITMOS ABN. Por unas matemáticas sencillas, naturales y divertidas. Class dissection: 'Lesson study' aims to improve teaching In the sunlit library at Jorge Prieto Elementary on Chicago’s’ northwest side, an experiment is underway. A provisional classroom has been set up. A white board sits at the front of the room, and 20 eighth graders are seated at library tables. Math teacher Michael Hock is giving a lesson about the distributive property. Scattered throughout the room are some 30 other teachers. “What is the area of the garden?” Nestor answers the question, and the 30 adults, including visiting teachers from Japan, scribble notes. The exercise is called “lesson study.” Here’s how it works: teachers come up with a detailed lesson plan and explain ahead of time to colleagues the goals of the lesson. “[We’ve been] doing lesson study more than 100 years in Japan,” says Toshiakira Fujii, a premier professor of math education in Japan who was among those teachers observing at Prieto. Fujii says Japanese teachers see lesson study as a proving ground, a way to shine in front of their colleagues.

Beginning Your Interactive Notebook I hope that this blog inspires you to start using interactive notebooks with your students. Here are some things to think about when you get started... First, you need to decide what type of notebook you will be using. I went with a Five Subject Notebook (because I believe I need one that large). Next, figure out what you want to include in your notebook (besides notes, problems, and foldables). Table of Contents - one of the major benefits of using an interactive notebook is that it helps keep your students more organized. I also decided to include a grade sheet for each marking period and my grading policy. My Cover Page (I apologize...I am no artist!) My Guidelines: My Rubric: My Grade Logs (There is one for each marking period, for a total of four pages): A few other things to keep in mind: Don't let your students use permanent marker in their notebooks. Okay, you're ready!

Iniciación a la numeración con apoyo de la recta numérica - Actividades Lúdicas Educativas Con esta actividad buscamos como objetivo que el alumnado identifique visual y manipulativamente el concepto de decena y que traslade dicha experiencia al papel. Debajo de las fotografías se va explicando el proceso seguido. Foto 1: Una vez que el alumnado conoce y domina la primera decena, el objetivo es lograr que entienda el concepto de decena y que lo domine para poder formar y operar con el resto números hasta el 99. El alumno representa en la recta numérica del suelo, cada número con sus correspondientes palillos, pinchándolos en la unión del número con la pieza del puzzle de goma. Foto 2-3-4: Cuando llegamos al 10 ponemos los 10 palillos correspondientes y planteamos si podemos representar dicho número de otra forma distinta, pero siguiendo usando los palillos. Foto 5: Una vez solucionado el cambio que supone el número diez, seguimos representando el resto de números de la segunda decena. - La decena de palillos se repiten en la pieza del puzzle con el número 1

Interactive Whiteboard Resources: Maths, Key Stage 2 - Topmarks Education Class Clock A brilliant tool for helping children tell the time using both analogue and digital times. Clock A great teaching clock which gives the time in analogue and digital times. Turn the clock on or back in different time periods. Telling the Time A telling the time game which is good for demonstrating vocabulary associated with telling the time. On Time - Advanced Level Set the time on the analogue clock using the hours and minutes hand. Telling the Time This site can help you to read the time on an analogue clock. Twenty-four Hour Clock This site explains the 24 hour clock. Measures A maths game which combines measuring length and weight with data handling skills. Balance Scales This simple to use site has balance scales which shows how things used to be weighed but it uses grams. Understanding Measures This maths 'booster' activity can help children to differentiate different units of metric measurement and read scales. Temperature Learn to read a thermometer. Dartboard - Rounding Geoboard

Documento sin título El trabajo que exponemos, es el resultado de una experiencia que se enmarca, dentro del Área de Matemáticas en E. Primaria, y que surgió ante la necesidad de reflexionar sobre el proceso de Enseñanza/ Aprendizaje en esta área, así como de nuestra actuación como docentes a lo largo del mismo. Actualmente nos encontramos en nuestras escuelas, por un lado con niños y niñas, que desde su primer contacto en la misma, muestran cierta dificultad para la comprensión de determinados conceptos matemáticos; y por otro lado con niños y niñas que, si bien, han llegado a operar con cantidades, descomponiendo, componiendo, comparando y ordenando los números, fracasan en la automatización de determinados algoritmos (suma, resta, multiplicación, división, etc..). Desarrollar la rapidez y aproximación en el cálculo matemático. Aplicar nuevas estrategias a los contenidos del Área de Matemáticas. La experiencia está enmarcada dentro del Área de Matemáticas, realizándose con el grupo/clase.

Quadratic Equation Solver If you have an equation of the form "ax2 + bx + c = 0", we can solve it for you. Just enter the values of a, b and c below Is it Quadratic? Only if it can be put in the form ax2 + bx + c = 0, and a is not zero. The name comes from "quad" meaning square, because the variable is squared (in other words x2). These are all quadratic equations in disguise: How Does this Work? The solution(s) to a quadratic equation can be calculated using the Quadratic Formula: The "±" means you need to do a plus AND a minus, so there are normally TWO solutions ! The blue part (b2 - 4ac) is called the "discriminant", because it can "discriminate" between the possible types of answer. Note: you can still access the old version here.

Editorial La Calesa, especialistas en materiales educativos Toda la Información, enlaces y recursos sobre el Cálculo ABN ¿Alguna vez han oído hablar del método de cálculo abierto basado en números (ABN)? Se está practicando en más de doscientos colegios de España y de fuera de España. Su éxito se explica porque consigue unos resultados espectaculares: los niños alcanzan un cálculo asombroso, más que doblan su capacidad de resolución de problemas, se sitúan en un nivel de conocimientos muy por encima del que se creía que le correspondía a su edad, y por si todo lo anterior fuera poco, los niños se entusiasman por el aprendizaje matemático. No es ninguna fantasía. Su aplicación en más de mil grupos y su aprendizaje por miles y miles de alumnas y alumnos se convierten en unos argumentos incontestables. Por cuarto año consecutivo, continuamos con la comercialización de estos magníficos cuadernos de material complementario. Les invitamos a investigar e indagar acerca de este revolucionario método para enseñar las Matemáticas. Fundamentación.