background preloader


Saturn's interior is probably composed of a core of iron, nickel and rock (silicon and oxygen compounds), surrounded by a deep layer of metallic hydrogen, an intermediate layer of liquid hydrogen and liquid helium and an outer gaseous layer.[15] The planet exhibits a pale yellow hue due to ammonia crystals in its upper atmosphere. Electrical current within the metallic hydrogen layer is thought to give rise to Saturn's planetary magnetic field, which is weaker than Earth's magnetic field but has a magnetic moment 580 times that of the Earth due to Saturn's larger body radius. Saturn's magnetic field strength is around one-twentieth the strength of Jupiter's.[16] The outer atmosphere is generally bland and lacking in contrast, although long-lived features can appear. Physical characteristics Composite image roughly comparing the sizes of Saturn and Earth Internal structure Saturn is termed a gas giant, but it is not entirely gaseous. Atmosphere Cloud layers North pole hexagonal cloud pattern Related:  planets

Uranus Uranus is the seventh planet from the Sun. It has the third-largest planetary radius and fourth-largest planetary mass in the Solar System. Uranus is similar in composition to Neptune, and both are of different chemical composition than the larger gas giants Jupiter and Saturn. It is the only planet whose name is derived from a figure from Greek mythology rather than Roman mythology like the other planets, from the Latinized version of the Greek god of the sky, Ouranos. History Though it is visible to the naked eye like the five classical planets, it was never recognized as a planet by ancient observers because of its dimness and slow orbit.[18] Sir William Herschel announced its discovery on March 13, 1781, expanding the known boundaries of the Solar System for the first time in history. Discovery The power I had on when I first saw the comet was 227. Although Herschel continued to cautiously describe his new object as a comet, other astronomers had already begun to suspect otherwise.

Space Science - Saturn and Titan Saturn and Titan, side by side Saturn and Titan 5 March 2012 Titan, Saturn’s largest moon at 5150 km across, looks small here, pictured to the right of the gas giant in this infrared image taken by the Cassini spacecraft. Saturn’s rings appear across the top of the image, casting shadows onto the planet across the middle of the image. A much smaller moon, Prometheus, 86 km across, appears as a tiny white speck above the rings in the far upper right of the image. The shadow of another moon, Pandora, 100 km at its widest, can be seen below the ring shadows towards the right side of the planet. Cassini’s wide-angle camera captured the view on 5 January, while it was about 685 000 km from Saturn.

Moon The Moon is in synchronous rotation with Earth, always showing the same face with its near side marked by dark volcanic maria that fill between the bright ancient crustal highlands and the prominent impact craters. It is the second-brightest regularly visible celestial object in Earth's sky (after the Sun), as measured by illuminance on the surface of Earth. Although it can appear a very bright white, its surface is actually dark, with a reflectance just slightly higher than that of worn asphalt. Its prominence in the sky and its regular cycle of phases have, since ancient times, made the Moon an important cultural influence on language, calendars, art, and mythology. The Moon's gravitational influence produces the ocean tides and the slight lengthening of the day. The Moon is thought to have formed nearly 4.5 billion years ago, not long after Earth. As of November 2014[update], the Moon is the only celestial body other than Earth on which humans have set foot. Name and etymology

Mercury (planet) Mercury is gravitationally locked and rotates in a way that is unique in the Solar System. As seen relative to the fixed stars, it rotates exactly three times for every two revolutions[b] it makes around its orbit.[13] As seen from the Sun, in a frame of reference that rotates with the orbital motion, it appears to rotate only once every two Mercurian years. An observer on Mercury would therefore see only one day every two years. Because Mercury's orbit lies within Earth's orbit (as does Venus's), it can appear in Earth's sky in the morning or the evening, but not in the middle of the night. Also, like Venus and the Moon, it displays a complete range of phases as it moves around its orbit relative to Earth. Internal structure Internal structure of Mercury: 1. Mercury's density can be used to infer details of its inner structure. Mercury's core has a higher iron content than that of any other major planet in the Solar System, and several theories have been proposed to explain this. Plains

Neptune Neptune is similar in composition to Uranus, and both have compositions which differ from those of the larger gas giants, Jupiter, and Saturn. Neptune's atmosphere, while similar to Jupiter's and Saturn's in that it is composed primarily of hydrogen and helium, along with traces of hydrocarbons and possibly nitrogen, contains a higher proportion of "ices" such as water, ammonia, and methane. Astronomers sometimes categorise Uranus and Neptune as "ice giants" in order to emphasise these distinctions.[10] The interior of Neptune, like that of Uranus, is primarily composed of ices and rock.[11] It is possible that the core has a solid surface, but the temperature would be thousands of degrees and the atmospheric pressure crushing.[12] Traces of methane in the outermost regions in part account for the planet's blue appearance.[13] In contrast to the hazy, relatively featureless atmosphere of Uranus, Neptune's atmosphere is notable for its active and visible weather patterns. History Naming

True Saturn True Saturn Date: 6 Oct 2004 While cruising around Saturn in early October 2004, Cassini captured a series of images that have been composed into this large global natural color view of Saturn and its rings. This grand mosaic consists of 126 images acquired in a tile-like fashion, covering one end of Saturn's rings to the other and the entire planet in between. Three images (red, green and blue) were taken of each of the 42 locations, or "footprints," across the planet. The smallest features seen here are 38 km (24 miles) across. The sun-Saturn-Cassini, or phase, angle at the time was 72 degrees; hence, the partial illumination of Saturn in this portrait.

Milky Way Stars and gases at a wide range of distances from the Galactic center orbit at approximately 220 kilometers per second. The constant rotation speed contradicts the laws of Keplerian dynamics and suggests that much of the mass of the Milky Way does not emit or absorb electromagnetic radiation. This mass has been given the name “dark matter”.[22] The rotational period is about 240 million years at the position of the Sun.[9] The Galaxy as a whole is moving at a velocity of approximately 600 km per second with respect to extragalactic frames of reference. The oldest known star in the Galaxy is at least 13.6 billion years old and thus must have formed shortly after the Big Bang.[6] Surrounded by several smaller satellite galaxies, the Milky Way is part of the Local Group of galaxies, which forms a subcomponent of the Virgo Supercluster. Appearance[edit] The Milky Way has a relatively low surface brightness. Size and mass[edit] Schematic illustration showing the galaxy in profile

Jupiter Structure Jupiter is composed primarily of gaseous and liquid matter. It is the largest of four gas giants as well as the largest planet in the Solar System with a diameter of 142,984 km (88,846 mi) at its equator. The density of Jupiter, 1.326 g/cm3, is the second highest of the gas giants, but lower than for any of the four terrestrial planets. Composition Jupiter's upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume or fraction of gas molecules. Based on spectroscopy, Saturn is thought to be similar in composition to Jupiter, but the other gas giants Uranus and Neptune have relatively much less hydrogen and helium.[21] Because of the lack of atmospheric entry probes, high-quality abundance numbers of the heavier elements are lacking for the outer planets beyond Jupiter. Mass Jupiter's diameter is one order of magnitude smaller (×0.10045) than the Sun, and one order of magnitude larger (×10.9733) than the Earth. Internal structure Atmosphere Cloud layers

Mars Animation of Mars' rotation from the vantage of an observer who moves south, then north, to hover over both poles, showing the planet's major topographic features. Mars is currently host to five functioning spacecraft: three in orbit – the Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter – and two on the surface – Mars Exploration Rover Opportunity and the Mars Science Laboratory Curiosity. Defunct spacecraft on the surface include MER-A Spirit and several other inert landers and rovers such as the Phoenix lander, which completed its mission in 2008. Observations by the Mars Reconnaissance Orbiter have revealed possible flowing water during the warmest months on Mars.[25] In 2013, NASA's Curiosity rover discovered that Mars' soil contains between 1.5% and 3% water by mass (about two pints of water per cubic foot or 33 liters per cubic meter, albeit attached to other compounds and thus not freely accessible).[26] Physical characteristics Size comparison of Earth and Mars. Soil

About Saturn & Its Moons Introduction On June 30, 2004, the Cassini spacecraft entered orbit around Saturn to begin the first in-depth, up-close study of the ringed planet and its domain. As expected, the Saturn System has provided an incredible wealth of opportunities for exploration and discovery. "We're looking at a string of remarkable discoveries -- about Saturn's magnificent rings, its amazing moons, its dynamic magnetosphere and about Titan's surface and atmosphere," says Dr. Cassini's observations of Saturn's largest moon, Titan, have given scientists a glimpse of what Earth might have been like before life evolved. The spray of icy particles from the surface jets collectively forms a towering plume three times taller than the width of Enceladus. The first four years of the Cassini-Huygens saga brought a new dimension of understanding of the complex and diverse Saturn system. Why the "Cassini Solstice Mission?" A complete seasonal period on Saturn has never been studied at this level of detail.

Phobos Phobos (systematic designation: Mars I) is the larger and closer of the two natural satellites of Mars. Both moons were discovered in 1877. Phobos has dimensions of 27 × 22 × 18 km,[1] and is too small to be rounded under its own gravity. Its surface area is slightly less than the land area of Delaware. Phobos does not have an atmosphere due to low mass and low gravity.[10] It is one of the least reflective bodies in the Solar System. Faint dust rings produced by Phobos and Deimos have long been predicted but attempts to observe these rings have, to date, failed.[23] Recent images from Mars Global Surveyor indicate that Phobos is covered with a layer of fine-grained regolith at least 100 meters thick; it is hypothesized to have been created by impacts from other bodies, but it is not known how the material stuck to an object with almost no gravity.[24] Labeled Map of Phobos - Moon of Mars (USGS).[30] Tidal deceleration is gradually decreasing the orbital radius of Phobos.