background preloader

Effet Casimir

Effet Casimir
Un article de Wikipédia, l'encyclopédie libre. Pour les articles homonymes, voir Casimir. L’effet Casimir, tel que prédit par le physicien néerlandais Hendrik Casimir en 1948, est une force attractive entre deux plaques parallèles conductrices et non chargées[1]. Cet effet, dû aux fluctuations quantiques du vide, existe également pour d'autres géométries d'électrodes[2]. Expérimentalement, on utilise souvent des miroirs. Forces de Casimir sur des plaques parallèles. Raison[modifier | modifier le code] Les fluctuations quantiques du vide sont présentes dans toute théorie quantique des champs. L’énergie du « vide » entre deux plaques se calcule en tenant compte uniquement des photons (y compris des photons virtuels) dont les longueurs d’onde divisent exactement la distance entre les deux plaques ( , où n est un entier positif, λ la longueur d’onde d’un photon, et L la distance entre les deux plaques). Plus les plaques sont proches, moins il y a de photons obéissant à la règle . , l'espacement et Related:  Effet CasimirEnergie du Vide

L'effet Casimir ou la force du rien. Cette expérience a montré que le vide, plein d'énergie, était le siège de phénomènes sauvages. «C'est un phénomène extraordinaire, l'un des plus importants découverts au XXe siècle. Et qui aurait bien valu un prix Nobel», estime Simon Diner, directeur de recherche au CNRS, l'un des «initiateurs» du livre sur le vide. Ce que l'on appelle désormais «l'effet Casimir» peut être interprété de la manière suivante: le vide quantique (lire interview ci-contre), par construction, n'a pas une énergie nulle. (1) Expériences de Sparnay puis de Lamoreaux. (2) «Le vide et l'énergie de point zéro», titre de son article, pp. 105-108 de l'ouvrage le Vide (éd. (3) Des plaques de 1 cm2 à une distance de 0,5 millième de millimètre sont attirées avec une force de 10-4 dynes. LEGLU Dominique

Énergie du vide Un article de Wikipédia, l'encyclopédie libre. En mécanique quantique, on appelle Energie de Point zéro l'état d'un système quantique dans son état fondamental minimum proche du zéro absolu en température, c'est-à-dire l'état d'un système quantique à la plus basse énergie quantifiée [1] [2]. L'énergie du point zéro est l'énergie quantique et non classique, qui subsiste lorsque toute agitation thermique avec son énergie calorifique a été enlevée. Un système classique peut être immobile à son énergie minimum dans un potentiel classique. Par exemple un Oscillateur harmonique quantique décrit en détail sur wikipedia, a un état fondamental d'énergie de point zéro fondamentale moitié de sa fréquence classique multipliée par la constante de Planck. Une difficulté est que cette énergie de mouvement de point zéro du vide, somme de toutes les énergies de point zéro de chaque mode du champ, est infinie, car leur fréquence

En savoir plus: L'énergie du vide C'est ici que les choses deviennent particulièrement intéressantes. Comment savoir si une portion d'espace est réellement vide? Cette question relève de la physique microscopique, c'est-à-dire de la mécanique quantique et plus particulièrement de la théorie quantique des champs. En effet, si vous voulez vraiment savoir si un espace est vide, vous devez mesurer le nombre de particules dans une boîte, ou de manière équivalente l'énergie contenue dans cette boîte. Cette énergie est quantifiée : elle ne varie pas de manière continue et augmente d'une certaine quantité pour chaque particule ajoutée dans la boîte. Or, la physique moderne nous a enseigné que les particules ne sont pas des petites boules, mais plutôt des sortes de vaguelettes formées dans ce que l'on nomme des champs quantiques.

EFFET CASIMIR L'effet Casimir est l'une des plus remarquables prédictions de la théorie quantique, puisqu'il touche à la nature même de l'état fondamental de l'électrodynamique, ce qu'il est convenu d'appeler le « vide quantique ». Contrairement au vide classique, proche du néant, l'état de plus basse énergie d'une théorie quantique est peuplé d'états virtuels qu'une excitation peut éventuellement révéler : c'est le principe de l'apparition des paires particule-antiparticule dans les expériences de physique de haute énergie. Les modes électromagnétiques présents dans ce « vide » contribuent à l'énergie de ce « point zéro », mais l'insertion de deux plaques conductrices élimine certaines composantes et, par conséquent, diminue l'énergie de l'ensemble. Il en résulte une force d'attraction inversement proportionnelle à la puissance quatrième de la distance entre ces plaques : c'est la force de Casimir. Bernard PIRE

mécanique des grains IntroductionLe but de ce dossier est de couvrir les principaux aspects de la mécanique des sables, poudres et grains dans son ensemble (Tout un programme). Nous allons voir dans cet article les spécificités du comportement des matériaux dits granulaires (ou encore "pulvérulents"). Quelques questions qui seront traitées dans cette article pour vous mettre en bouche) : La physique moderne s'intéresse depuis relativement peu de temps aux matériaux granulaires. Et là, elle a découvert que c'était une physique vraiment particulière et qu'il était difficile d'extrapoler des autres mécaniques, comme celle de la mécanique des fluides (liquide ou gaz selon les cas) pour les écoulements de ces grains, même si de fortes analogies existent parfois. En fait, le comportement de ces matériaux granulaires relève de la mécanique des solides, parfois celles des fluides, mais souvent il faut inventer de nouvelles lois (souvent encore empiriques) ! Vous voulez en savoir davantage ?

Science - L'énergie du vide 1916 Niels Bohr est considéré comme l'un des fondateurs de la physique quantique. Utilisant la théorie des quanta de Planck et le modèle planétaire de Rutherford, Bohr supposera que les électrons gravitent autour du noyau de l'atome sur des orbites correspondant à des niveaux d'énergie. Ce modèle suggèrera que l'atome émet un rayonnement électromagnétique lorsqu'un électron transite d'un niveau quantique à un autre. 1924 Louis de Broglie concilia les aspects ondulatoire et corpusculaire de la matière. 1927 Werner Heisenberg démontra que les électrons se comportaient à la fois comme des ondes mais également comme des particules - il est en effet impossible de connaître précisément leur position et leur vitesse. 1928 Paul Dirac Intéressé par la théorie quantique introduite par Heisenberg, il dévoilera par la suite une équation relativiste permettant de décrire les propriétés de l'électron.

Et la lumière surgit du néant... Il va falloir nous y habituer: le vide n’existe pas… Aristote en avait eu une extraordinaire préscience lorsqu’il affirmait, il y a quelque 23 siècles, que «la nature a horreur du vide». Même si on peut parier que le philosophe grec ne pensait pas exactement à la même notion de vide que celle des physiciens d’aujourd’hui, il avait quand même mis dans le mille. La définition classique du vide nous dit qu’il s’agit d’une absence de matière dans une zone de l’espace. Or, en fait, le vide n’est jamais totalement vide. La physique quantique nous apprend, au contraire, qu’il pullule de particules... et d’antiparticules. Dans le vide quantique, ce bouillon se traduit par un jeu à somme nulle. publicité Pourtant, pendant des temps très courts, des particules parviennent à exister avant d’être irrémédiablement annihilées. L'effet Casimir A-t-on l’assurance de la réalité de ce phénomène? Une force? Mais il existe aussi du vide entre les miroirs... L'énergie du vide De la lumière à la matière

Matériau granulaire Un article de Wikipédia, l'encyclopédie libre. Un matériau granulaire est un matériau constitué d'un grand nombre de particules solides distinctes, les grains, qui ne sont pas liés par des liaisons covalentes (c'est-à-dire de liaison chimique). Cette division en éléments multiples entraîne des comportements particuliers de ces matériaux, beaucoup de propriétés à grande échelle étant ainsi indépendantes des propriétés individuelles des grains. Ce type de matériau se rencontre dans beaucoup de domaines, aussi bien naturels (sable et dunes, roches dans une coulée de boue, avalanches, etc.) qu'industriels (préparation de médicaments, fabrication de bétons, peintures, granulés, granulats, etc.) ou même agroalimentaires (grains de maïs, de blé, etc.). Description[modifier | modifier le code] Les matériaux divisés sont constitués de grains distincts, dont les collisions sont dissipatives du point de vue énergétique. Le fluide qui se trouve entre les grains a aussi une grande importance.

L'énergie du Vide Comment décrire la notion de vide ? Très facile me direz vous... c'est l'absence de matière et d'énergie, voilà tout ! Si je prends une cloche en verre et que j'y produis un vide très poussé, il est aisé de voir que l'espace occupé pas la cloche est vide de tout : même l' air y est absent. Et pourtant... A l'échelle atomique ce qu'on appelle le « vide » est tout à fait différent de celui auquel nous sommes habitués : en fait, le vide n'existe tout simplement pas. Il est le siège d'une perpétuelle agitation où particules et anti-particules naissent et se désintègrent dans une période de temps extrêmement courte. Dans son deuxième énoncé, Heisenberg traduit cet état de fait par l' équation du Second principe d'incertitude : ∆ E . ∆ T ≥ h / ( 2 Π ) . Que nous dit cette équation ? Autrement dit, si nous effectuons une mesure sur un système, pendant un temps extrêmement court, le vide est habité par une énergie et cette énergie est d'autant plus grande que le temps de la mesure est bref.

Le vide, ce n'est pas rien LE MONDE SCIENCE ET TECHNO | | Roland Lehoucq (Astrophysicien au Commissariat à l'énergie atomique et aux énergies alternatives) Le vide est un milieu étonnant : des chercheurs finlandais ont réussi à en faire émerger de la lumière, selon une étude publiée dans la revue PNAS du 11 février. Cela semble pourtant impossible si l'on tient pour acquis que le vide est ce qui reste quand on a tout enlevé. Une question se pose immédiatement : que représente ce "tout" ? La matière bien sûr, et la lumière aussi. Est-ce suffisant ? En 1924, le physicien français Louis de Broglie suggéra que la dynamique d'une particule élémentaire ne pouvait être comprise qu'en utilisant des lois empruntées à la physique des ondes.

Énergie Un article de Wikipédia, l'encyclopédie libre. La foudre illustre généralement l'énergie à l'état naturel. Paradoxalement elle en contient assez peu. Sa violence vient surtout de la rapidité et de l'extrême localisation du phénomène. Une sensibilisation accrue aux effets du réchauffement climatique a conduit ces dernières années à un débat mondial sur la maîtrise des émissions de gaz à effet de serre et à des actions pour leur réduction. Étymologie et définitions[modifier | modifier le code] L’énergie est un concept qui remonte à l'Antiquité. Le mot français « énergie » vient du latin vulgaire energia, lui-même issu du grec ancien ἐνέργεια / enérgeia. L’expérience humaine a montré que tout travail requiert une force et produit de la chaleur ; que plus on « dépense » d’énergie par quantité de temps, plus vite on fait un travail, et plus on s’échauffe. La problématique de l'énergie repose donc sur celle de sa transformation. Typologies[modifier | modifier le code] Prenons un autre exemple.

Vide quantique Un article de Wikipédia, l'encyclopédie libre. Pour les articles homonymes, voir Vide. Pour le physicien le vide a toujours été une notion extrêmement difficile à définir. La physique quantique, en particulier, vient compliquer la définition du vide. Inégalité d'Heisenberg[modifier | modifier le code] Les inégalités d'Heisenberg (plus connues sous le nom de principe d'incertitude) sont une conséquence directe de la dualité onde-corpuscule. où ℏ est la Constante de Planck normalisée. Fluctuation du vide et création de paires de particules[modifier | modifier le code] L'équation la plus célèbre de la physique traduit l'équivalence entre masse et énergie. Fluctuation du vide et force de Casimir[modifier | modifier le code] La manifestation expérimentale la plus flagrante des fluctuations du vide est la force de Casimir. Fluctuation du vide et décalage de Lamb[modifier | modifier le code] Fluctuation du vide et rayonnement[modifier | modifier le code] Voir aussi[modifier | modifier le code]

L'énergie noire vient-elle du vide quantique ? Des chercheurs français, notamment de l’IRAP-OMP (CNRS/Université P. Sabatier Toulouse III), proposent une origine physique à l’énergie noire. Il s’agirait de l’action gravitationnelle du vide quantique présent dans une dimension supplémentaire de l’espace. Considérée depuis très longtemps en physique, l’amplitude de l’action gravitationnelle du vide quantique était néanmoins estimée à des valeurs allant bien au delà de celles autorisées par les observations à l’échelle cosmologique: quelques 10120 fois la densité actuelle de l’univers. Cette situation a conduit les cosmologistes à chercher d’autres mécanismes pour expliquer l’accélération de l’expansion de l’univers, comme la quintessence ou des modifications de la relativité générale. Leurs travaux font l'objet d'une publication dans Astronomy & Astrophysics. Les résultats récemment obtenus par le satellite Planck1 sont venus conforter notre connaissance de la composition de l’univers et les caractéristiques de son histoire. Note(s):

Related: