background preloader

Intrication quantique

Intrication quantique
Un article de Wikipédia, l'encyclopédie libre. Historique[modifier | modifier le code] Le caractère surprenant des états intriqués a pour la première fois été souligné par Einstein, Podolsky et Rosen dans un article de 1935 qui tentait de montrer que la mécanique quantique était incomplète. Dans cet article, les auteurs décrivent une expérience de pensée qui restera connue comme le paradoxe EPR. Définition[modifier | modifier le code] Il est plus aisé de définir ce qu'est un état non intriqué, ou séparable, que de définir directement ce qu'est un état intriqué. État pur[modifier | modifier le code] Dans le cas où le système global {S1+S2} peut être décrit par un vecteur d'état, son état est un vecteur de l'espace de Hilbert . Ces états sont appelés états séparables ou factorisables. , qui n'est pas altéré par les mesures effectuées sur S2. Un état intriqué est par définition un état non séparable, qui s'écrit en général sous la forme C'est donc une superposition d'états d'un système biparti. .

http://fr.wikipedia.org/wiki/Intrication_quantique

Related:  TerminologiePHYSIQUEjunka218Particules

Principe de superposition quantique Un article de Wikipédia, l'encyclopédie libre. Mesure de la position d'un ensemble de particules étant dans le même état superposé. En mécanique quantique, selon le principe de superposition, un même état quantique peut posséder plusieurs valeurs pour une certaine quantité observable (spin, position, quantité de mouvement etc.) Ce principe résulte du fait que l'état - quel qu'il soit - d'un système quantique (une particule, une paire de particules, un atome etc.) est représenté par un vecteur dans un espace vectoriel nommé espace de Hilbert (premier postulat de la mécanique quantique).

Vitesse supraluminique Un article de Wikipédia, l'encyclopédie libre. Une vitesse supraluminique (superluminal en anglais) désigne une vitesse supérieure à la vitesse de la lumière. Ce terme peut désigner plusieurs phénomènes (le dépassement de la vitesse de la lumière dans le vide ne crée de problèmes théoriques qu'à partir de la découverte de la relativité restreinte) : Historique[modifier | modifier le code] En l'an 50 avant notre ère, Lucrèce semble être le premier auteur à évoquer des vitesses supraluminiques pour des particules, suivant sa conception de la matière et de la lumière[3].

Théorie des cordes Un article de Wikipédia, l'encyclopédie libre. Les niveaux de grossissements : monde macroscopique, monde moléculaire, monde atomique, monde subatomique, monde des cordes. La théorie des cordes est un domaine actif de recherche traitant de l'une des questions de la physique théorique : fournir une description de la gravité quantique c’est-à-dire l’unification de la mécanique quantique et de la théorie de la relativité générale. La principale particularité de la théorie des cordes est que son ambition ne s’arrête pas à cette réconciliation, mais qu’elle prétend réussir à unifier les quatre interactions élémentaires connues, on parle de théorie du tout. Case quantique Un article de Wikipédia, l'encyclopédie libre. En physique, en mécanique quantique, dans le modèle de Bohr, les cases quantiques sont les places dans les orbitales atomiques qui peuvent être occupées par un électron, ou par une paire d'électrons de spin complémentaires. Nombres quantiques[modifier | modifier le code]

Gravitation quantique à boucles Un article de Wikipédia, l'encyclopédie libre. La gravitation quantique à boucles (Loop Quantum Gravity en anglais) est une tentative de formuler, sans espace de référence, une théorie de la gravitation quantique, et donc d'unifier la théorie de la relativité générale et les concepts de la physique quantique. Elle est basée sur la quantification canonique directe de la relativité générale dans une formulation hamiltonienne, les trois autres interactions fondamentales n'étant pas considérées dans un premier temps. Une difficulté de l'approche est que le temps joue un rôle singulier et que la covariance générale des équations n'est plus manifeste. Une première formulation hamiltonienne de la relativité générale avait été proposée par Arnowitt, Deser et Misner en 1962[1], mais la tentative de quantification canonique de leur théorie par Wheeler et DeWitt n'avait pas fourni de résultats concluants, les équations obtenues étant trop difficiles à résoudre.

Klein / Portraits de chercheurs / La recherche Né en 1958, Etienne Klein est titulaire d’un diplôme d’ingénieur de l’Ecole Centrale de Paris, d’un DEA de physique théorique et d’un doctorat en philosophie des sciences. Il a participé à divers grands projets, en particulier à l'étude d'un accélérateur à cavités supraconductrices, à la conception du futur grand collisionneur européen du CERN, le LHC, et à la mise au point d’un procédé de séparation isotopique par laser. Il dirige actuellement le Laboratoire de Recherche sur les Sciences de la Matière du CEA (LARSIM). Il est professeur de physique et de philosophie des sciences à l'Ecole Centrale de Paris. Nombre quantique Un article de Wikipédia, l'encyclopédie libre. Un nombre quantique est, en mécanique quantique, un élément d'un jeu de nombres permettant de définir l'état quantique complet d'un système. Chaque nombre quantique définit la valeur d'une quantité conservée dans la dynamique d'un système quantique. En physique des particules, les nombres quantiques dits « intrinsèques » sont des caractéristiques de chaque type de particule élémentaire. Un nombre quantique est aussi le nombre de couches dans le cortège électronique des électrons d'un atome ou d'un ion. (Voir Nombre quantique principal).

La lévitation des supraconducteurs : l’effet Meissner On fête cette année les 100 ans de la découverte de la supraconductivité. Cet anniversaire est l’occasion de voir un peu partout cette merveilleuse expérience où un aimant lévite au dessus d’un supraconducteur. Je me suis souvent demandé en quoi le fait de conduire le courant sans résistance était responsable de ce phénomène de lévitation. Je ne l’ai appris que bien plus tard, et la réponse est : en rien !

Voyage dans le temps: la mécanique quantique résoud le «paradoxe du grand-père». Enfin, peut-être. «Attends, mais s'il revient dans son passé et qu'il sauve tout le monde, son lui futur est changé! Du coup comment il peut revenir dans le passé pour sauver tout le monde?» On est tous passé par là: devant tel ou tel scénario à base de voyage dans le temps, l'étape qui consiste à se faire des noeuds à la cervelle pour être bien certain que le film, la série ou le livre se tiennent est inévitable.

Le boson de Higgs expliqué à ma fille Ça sent le roussi pour le boson de Higgs. (Edit du 05/07/2012) Le boson de Higgs a semble-t-il été trouvé. Je me suis donc dit qu’il était temps que je me lance un défi : essayer d’expliquer en termes simples de quoi il s’agit. Découvrir le boson de Higgs (ou infirmer son existence) est en effet l’objectif principal du LHC, le dernier grand collisionneur construit au CERN. Puisque les citoyens ont tous contribué à la construction de cette fabuleuse machine, tout le monde a le droit d’essayer de comprendre ce qu’on y cherche.

Soliton Un article de Wikipédia, l'encyclopédie libre. Un soliton est une onde solitaire qui se propage sans se déformer dans un milieu non linéaire et dispersif. On en trouve dans de nombreux phénomènes physiques de même qu'ils sont la solution de nombreuses équations aux dérivées partielles non linéaires. Historique[modifier | modifier le code]

Related: