background preloader

Nombre d'or

Nombre d'or
Le nombre d’or existe. Il s’agit de la proportion selon laquelle le rapport entre deux parties est égal au rapport entre la plus grande de ces parties et le tout. C’est un nombre irrationnel : (1 + √5) / 2. Soit 1,618039887... et un nombre infini de décimales. On le trouve notamment obligatoirement dans certaines figures géométriques comme rapport entre longueurs incommensurables. En particulier dans tout ce qui est pentagonal (au même titre que √2 intervient dans le carré, √3 dans le cube, pi dans le cercle…). Je renvoie à l'article "nombre d'or" de wikipédia ou au Que sais-je ? Car, de ce nombre, bien des usages sont faits qui sortent de la mathématique. Le nombre d’or dans l’art et l’architecture. Les premiers lieux communs concernent l’art et notamment l’architecture : il y en a cinq principaux. Il importe aussi d'être précis. 1) Les pyramides. Sur la quarantaine de pyramides royales égyptiennes recensées, près de trente sont pyramidales. 2) Le temple de Jérusalem. 3) Le Parthénon. 4. Related:  Le nombre d'or et la composition d'un tableau

Le nombre d'or L' histoire ... Il y a 10 000 ans : Première manifestation humaine de la connaissance du nombre d'or (temple d'Andros découvert sous la mer des Bahamas). 2800 av JC : La pyramide de Khéops a des dimensions qui mettent en évidence l'importance que son architecte attachait au nombre d'or. Vè siècle avant J-C. (447-432 av.JC) : Le sculpteur grec Phidias utilise le nombre d'or pour décorer le Parthénon à Athènes, en particulier pour sculpter la statue d'Athéna Parthénos . IIIè siècle avant J-C. : Euclide évoque le partage d'un segment en "extrême et moyenne raison" dans le livre VI des Eléments. 1498 : Fra Luca Pacioli, un moine professeur de mathématiques, écrit De divina proportione ("La divine proportion"). Au XIXème siècle : Adolf Zeising (1810-1876), docteur en philosophie et professeur à Leipzig puis Munich, parle de "section d'or" (der goldene Schnitt) et s'y intéresse non plus à propos de géométrie mais en ce qui concerne l'esthétique et l'architecture.

Le nombre d'or (Vitruve, architecte romain 1er siècle avant notre ère). Ainsi si a et b sont les deux grandeurs alors nous aurons : a/b = (a + b) / a. a/b = 1 + b/a pour simplifier, prenons comme variable x = a/b. alors nous obtenons : x = 1 + 1/x x - 1 - 1/x = 0 comme x non nul, nous obtenons l'équation suivante que nous noterons (E) : x2 - x - 1 = 0 qui admet comme racine positive : x = que nous notons Φ et vaut à peu près 1,618... C'est cette valeur qui est appelée le nombre d'or (dit Φ (phi) en hommage au sculpteur grec Phidias qui s'en servit dans les proportions du Parthénon à Athènes. A ce stade, je vous soumets un petit problème que m'a proposé Dominique Payeur : Je dispose d'un capital. Nous pouvons d'ores et déjà noter quelques résultats : On pourrait aussi sans équation du second degré montrer que 1/Φ = Φ - 1. Des équations précédentes, nous pouvons déduire : x2 = x + 1 et x = 1 + 1/x d'où et on a aussi : Le nombre d’or peut s’écrire à l’aide d’une infinité de radicaux emboîtés Les FRACTIONS

La composition et le nombre d'or construction composition,esquisse,regard,accrochage oeuvre,nombre d’or,composition artistique, Nombre d’or ou Phi Utilisé depuis la nuit des temps [1], dans l’architecture [2] comme dans les œuvres d’arts [3], le nombre d’or est parfois contesté. La construction d’une composition : L’orientation de votre toile/papier est à étudier en premier lieu. Le regard et la composition : Le regard doit-il se porter sur un élément particulier du dessin ou de la peinture ? Construction d’un rectangle d’or Voyez la figure à gauche et en haut pour construire un rectangle d’or : Tracez un carré, du centre d’un des cotés (marqué C) et tracez un arc de cercle passant par un angle opposé. Figure du centre : Reportez la petite longueur sur le petit coté du rectangle. Une esquisse pour vérifier la composition : Imaginez vos sujets sous formes de volumes géométriques simples. L’accrochage de l’œuvre : Créer et contrarier les règles :

Nombre d'Or C'est la valeur d'une proportion, d'un rapport entre deux grandeurs de même nature comme deux longueurs, deux angles, deux nombres de branches, ... Ce nombre est irrationnel comme “pi” . Son symbole est “phi” (de Phydias). Sa valeur est donnée par la résolution de l'équation du second degré x2 - x - 1 = 0 dont les racines sont : (1+/- racine de 5) / 2 = x= 1,61803... et x' = - 0,61803...= - 1 / x . Toute suite de Fibonacci permet de retrouver le nombre d'or avec au moins 2 chiffres après la virgule exacts à partir du septième ou huitième nombre. Il faudrait arriver à l'infini pour obtenir tous les chiffres exacts. La géométrie permet aussi de retrouver le nombre d'or présent dans toute forme pentagonale régulière et dans l'étoile à 5 branches comme dans les spirales logarithmiques ou d'Archimède ou des tracés spécifiques.

Le nombre d'or dans l'architecture grecque : mythe ou réalité ? Filles des nombres d’or, Fortes des lois du ciel, Sur nous tombe et s’endort, Un Dieu couleur de miel. Paul Valéry, « Cantique des Colonnes ». Le nombre d’or est un nombre égal à (1+√5)/2, soit environ 1,618 et correspond à une proportion considérée comme particulièrement esthétique. Il apparaît dans la pensée grecque avec Pythagore, au tournant du VIème et du Vème siècle avant J. Cette proportion, pour de nombreux artistes comme Léonard de Vinci ou encore Le Corbusier -pour ne citer que les plus célèbres-, donnerait la clef de l’harmonie d’une œuvre d’art. Mais dans quelle mesure n’y a-t-il pas là un mythe architectural ? Quelques propriétés mathématiques La section d’or La définition géométrique de la section dorée par Euclide est celle qui coupe un segment a + b en établissant une relation telle que : (a + b)/a = a/b. La célèbre suite de Fibonacci, mathématicien du XIIIème siècle, entretient des liens étroits avec φ. Pentagramme étoilé Triangle de module Phi φ dans l’architecture grecque

Le nombre d'or (Vitruve, architecte romain 1er siècle avant notre ère). Ainsi si a et b sont les deux grandeurs alors nous aurons : a/b = (a + b) / a. a/b = 1 + b/a pour simplifier, prenons comme variable x = a/b. alors nous obtenons : x = 1 + 1/x x - 1 - 1/x = 0 comme x non nul, nous obtenons l'équation suivante que nous noterons (E) : x2 - x - 1 = 0 qui admet comme racine positive : x = que nous notons Φ et vaut à peu près 1,618... C'est cette valeur qui est appelée le nombre d'or (dit Φ (phi) en hommage au sculpteur grec Phidias qui s'en servit dans les proportions du Parthénon à Athènes. En espagne, deux tableaux de Antonio de Garcia de Pablo, muchas gracias ;): Pour voir les images suivantes en plus grand les cliquer A ce stade, je vous soumets un petit problème que m'a proposé Dominique Payeur : Je dispose d'un capital. Nous pouvons d'ores et déjà noter quelques résultats : On pourrait aussi sans équation du second degré montrer que 1/Φ = Φ - 1. et on a aussi : Les FRACTIONS

Phi - Le Nombre d'Or - La Divine Porportion - l'ADN Divin Les Romains, les Grecs, les Juifs et les Egyptiens semblaient tous d'accord : 1,618 était le nombre d'or, le nombre de l'harmonie universelle, le nombre de la création, le nombre de Dieu, le Créateur. Lle nombre utilisé partout dans l'ordre caché de la Création et qu'il fallait donc employer dans les édifices dédiés au Créateur afin de s'en rapprocher. Empreint de mystère, objet d'un culte tantôt religieux, tantôt magique, le nombre d'or influence la vision occidentale de l'harmonie. Chez les Grecs, avec le développement de la géométrie, la secte secrète des pythagoriciens en avait fait un symbole d'harmonie universelle, de vie, d'amour et de beauté. Au Moyen-Age, les savants, les pères de l'église, les bâtisseurs, les maîtres d'ouvrages ou maîtres d'oeuvre, se réclament de la doctrine platonicienne des corps cosmiques, les cinq polyèdres réguliers, et ont fait du nombre d'or, "la divine proportion", un modèle de perfection esthétique et philosophique." Le nombre d'Or est appelé Phi

Homme de vitruve: Léonard de Vinci « [...] que la Nature a distribué les mesures du corps humain comme ceci. Quatre doigts font une paume, et quatre paumes font un pied, six paumes font une coudée : quatre coudées font la hauteur d’un homme. Et quatre coudées font un double pas, et vingt quatre paumes font un homme ; et il a utilisé ces mesures dans ses constructions. Si vous ouvrez les jambes de façon à abaisser votre hauteur d’un quatorzième, et si vous étendez vos bras de façon que le bout de vos doigts soit au niveau du sommet de votre tête, vous devez savoir que le centre de vos membres étendus sera au nombril, et que l’espace entre vos jambes sera un triangle équilatéral. La longueur des bras étendus d’un homme est égale à sa hauteur. Depuis la racine des cheveux jusqu’au bas du menton, il y a un dixième de la hauteur d’un homme. Depuis les tétons jusqu’au sommet de la tête, un quart de la hauteur de l’homme. La main complète est un dixième de l’homme.

PYTHAGORE de Samos Détails Affichages : 132615 PYTHAGORE de Samos. Naissance: vers 569 av.J-C. à Samos, Ionie - Mort: vers 475 av.J. Sa vie. D'une génération plus jeune que Thalès, il aurait vécu dans la seconde moitié du 6ème siècle av. 1. Né à Samos (Grèce), Pythagore avait 18 ans lorsqu'il participa aux Jeux olympique et remporta toutes les compétitions de pugilat (sport de l' antiquité comparable à la boxe, mais dans lequel les combattants portaient au poing un gantelet garni de fer ou de plomb, la ceste). En Ionie toute proche, il passa quelques années auprès de Thalès et de son élève Anaximandre (v. 610 BC - v. 546 BC).Puis en Syrie, il séjourna avec les sages Vénitiens qui l' initièrent aux mystères de Byblos.Puis au mont Carmel, dans le Liban d' aujourd'hui.De là, il s' embarqua pour l' Égypte et y resta 20 années. Lorsque les Perses envahirent le pays, il se serait retrouvé prisonnier et emmené à Babylone. Pythagore a acquis ses connaissances mathématiques au cours de ses voyages.

Le nombre d'or dans la peinture, l'architecture et la nature De nos jours, nous pouvons dire qu’il existe deux types de nature : la nature végétale et la nature animal. En les examinant de plus près nous pouvons remarquer que toutes deux peuvent présenter la suite de Fibonacci ainsi que les proportions d’Euclide. De ce fait, nous pouvons dire que le nombre d’or est présent partout dans la nature. La suite de Fibonacci fut créée par un célèbre mathématicien italien : Leonardo Fibonacci au XII ème siècle. Cette suite commence par 0 et 1 (ses deux premiers termes). A travers cette démonstration, nous allons prouver le lien existant entre la suite de Fibonacci et le nombre d’or. Nous avons vu précédemment que la suite de Fibonacci était définie à partir de 0 et 1. Nous pouvons alors poser la relation suivante avec n appartenant à l'ensemble d'entiers naturels (grâce à la définition de la suite de fibonacci exprimé ci-dessus) : Un+2=Un+1 + Un Soit Un+2 - Un+1 - Un De part cette relation, nous pouvons écrire l’équation suivante : x² - x - 1 = 0 Δ= b²- 4ac

Related: