background preloader

Melatonin

Melatonin
Melatonin The hormone can be used as a sleep aid and in the treatment of sleep disorders. It can be taken orally as capsules, tablets, or liquid. It is also available in a form to be used sublingually, and there are transdermal patches. There have been few clinical trials, particularly long-term ones, in the use of melatonin in humans. Discovery[edit] Biosynthesis[edit] Melatonin biosynthesis involves four enzymatic steps from the essential dietary amino acid tryptophan, which follows a serotonin pathway. In bacteria, protists, fungi, and plants melatonin is synthesized indirectly with tryptophan as an intermediate product of the shikimic acid pathway. Regulation[edit] In vertebrates, melatonin secretion is regulated by norepinephrine. It is principally blue light, around 460 to 480 nm, that suppresses melatonin,[24] proportional to the light intensity and length of exposure. Animals[edit] Plants[edit] Functions[edit] Circadian rhythm[edit] Antioxidant[edit] Immune system[edit] Medical uses[edit]

http://en.wikipedia.org/wiki/Melatonin

Related:  Psychoactive AlkaloidsPineal Gland (Bull.S. New Age Meditation)Hypnotics

Harmine Harmine is a fluorescent harmala alkaloid belonging to the beta-carboline family of compounds. It occurs in a number of different plants, most notably the Middle Eastern plant harmal or Syrian rue (Peganum harmala) and the South American vine Banisteriopsis caapi (also known as "yage" or "ayahuasca"). Harmine reversibly inhibits monoamine oxidase A (MAO-A), an enzyme which breaks down monoamines, making it a RIMA. Serotonin Serotonin /ˌsɛrəˈtoʊnɨn/ or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter. Biochemically derived from tryptophan, serotonin is primarily found in the gastrointestinal tract (GI tract), platelets, and the central nervous system (CNS) of animals, including humans. It is popularly thought to be a contributor to feelings of well-being and happiness.[6]

Barbiturate Barbiturates are drugs that act as central nervous system depressants, and can therefore produce a wide spectrum of effects, from mild sedation to total anesthesia. They are also effective as anxiolytics, hypnotics, and anticonvulsants. Barbiturates also have analgesic effects; however, these effects are somewhat weak, preventing barbiturates from being used in surgery in the absence of other analgesics. They have addiction potential, both physical and psychological.

Harmaline Harmaline is a fluorescent psychoactive indole alkaloid from the group of harmala alkaloids and beta-carbolines. It is the reduced hydrogenated form of harmine. Occurrence in nature[edit] Various plants contain harmaline including Peganum harmala (Syrian Rue) as well as the hallucinogenic drink ayahuasca, which is traditionally brewed using Banisteriopsis caapi. Conifer cone The male cone (microstrobilus or pollen cone) is structurally similar across all conifers, differing only in small ways (mostly in scale arrangement) from species to species. Extending out from a central axis are microsporophylls (modified leaves). Under each microsporophyll is one or several microsporangia (pollen sacs). Alcoholic beverage A selection of various kinds of alcoholic beverage. The interior of a liquor store in the United States. The global alcoholic drinks industry is expected to exceed $1 trillion this year.[1] An alcoholic beverage is a drink that typically contains 3%–60% ethanol, commonly known as alcohol. Alcoholic beverages are divided into three classes: beers, wines, and spirits (distilled beverages). They are legally consumed in most countries around the world.

Pinoline Pinoline is a methoxylated tryptoline (5-methoxytryptoline) that is produced in the pineal gland during the metabolism of melatonin. Its IUPAC name is 6-methoxy-1,2,3,4-tetrahydro-β-carboline, usually abbreviated as 6-MeO-THBC, and its more common name is a combination of "pineal beta-carboline".[1] The biological activity of this molecule is of interest as a potential free radical scavenger, also known as an antioxidant,[2] and as a monoamine oxidase A inhibitor.[3] Bausch & Lomb filed a patent for this molecule as a potential drug delivery device to treat various ophthalmic disorders in 2006.[4] Protection of cellular membranes[edit] Aluminium toxicity causes an increase in lipid peroxidation, with most damage occurring in the brain. A recent review of studies shows pinoline and melatonin to be effective at reducing the lipid peroxidation.

Endocrine system In addition to the specialised endocrine organs mentioned above, many other organs that are part of other body systems, such as bone, kidney, liver, heart and gonads, have secondary endocrine functions. For example the kidney secretes endocrine hormones such as erythropoietin and renin. A number of glands that signal each other in sequence are usually referred to as an axis, for example, the hypothalamic-pituitary-adrenal axis. As opposed to endocrine factors that travel considerably longer distances via the circulatory system, other signaling molecules, such as paracrine factors involved in paracrine signalling diffuse over a relatively short distance. The word endocrine derives from the Greek words ἐνδο- endo- "inside, within," and κρίνειν krinein "to separate, distinguish".

Histamine antagonist A histamine antagonist (commonly called an antihistamine) is a pharmaceutical drug that inhibits the action of histamine by either blocking its attachment to histamine receptors, or inhibiting the enzymatic activity of histidine decarboxylase which catalyzes the transformation of histidine into histamine (atypical antihistaminics). Histamine antagonists are commonly used for the relief of allergies caused by intolerance of proteins.[1] Clinical effects[edit]

Tryptoline Tryptoline, also known as tetrahydro-β-carboline and tetrahydronorharmane, is a natural organic derivative of beta-carboline. It is an alkaloid chemically related to tryptamines. Derivatives of tryptoline have a variety of pharmacological properties and are known collectively as tryptolines. Pharmacology[edit] Tryptolines are also potent reuptake inhibitors of serotonin and epinephrine, with a significantly greater selectivity for serotonin.

In humans, melatonin is produced by the pineal gland, a small endocrine gland[26] located in the center of the brain but outside the blood–brain barrier. The melatonin signal forms part of the system that regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature, but it is the central nervous system (specifically the suprachiasmatic nuclei, or SCN)[26] that controls the daily cycle in most components of the paracrine and endocrine systems[27][28] rather than the melatonin signal (as was once postulated). by oddsalom Mar 17

Related: