background preloader

Elitzur–Vaidman bomb tester

Elitzur–Vaidman bomb tester
Bomb-testing problem diagram. A - photon emitter, B - bomb to be tested, C,D - photon detectors. Mirrors in the lower left and upper right corners are half-silvered. In physics, the Elitzur–Vaidman bomb-testing problem is a thought experiment in quantum mechanics, first proposed by Avshalom Elitzur and Lev Vaidman in 1993.[1] An actual experiment demonstrating the solution was constructed and successfully tested by Anton Zeilinger, Paul Kwiat, Harald Weinfurter, and Thomas Herzog from the University of Innsbruck, Austria and Mark A. Kasevich of Stanford University in 1994.[2] It employs a Mach–Zehnder interferometer for ascertaining whether a measurement has taken place. Problem[edit] Consider a collection of bombs, of which some are duds. Solution[edit] Start with a Mach–Zehnder interferometer and a light source which emits single photons. Step-by-step explanation[edit] If the bomb is a dud: The bomb will pass the wave, so the situation is as described above, without a bomb. See also[edit] Related:  Founding experiments

Mach–Zehnder interferometer Figure 1. The Mach–Zehnder interferometer is frequently used in the fields of aerodynamics, plasma physics and heat transfer to measure pressure, density, and temperature changes in gases. In this figure, we imagine analyzing a candle flame. Either output image may be monitored. Introduction[edit] The Mach–Zehnder interferometer is a highly configurable instrument. Figure 2. Collimated sources result in a nonlocalized fringe pattern. The Mach–Zehnder interferometer's relatively large and freely accessible working space, and its flexibility in locating the fringes has made it the interferometer of choice for visualizing flow in wind tunnels[6][7] and for flow visualization studies in general. Mach–Zehnder interferometers are used in electro-optic modulators, electronic devices used in various fibre-optic communications applications. How it works[edit] Set-up[edit] A collimated beam is split by a half-silvered mirror. Properties[edit] In other words: Figure 3. We also note that: See also[edit]

Stern–Gerlach experiment Basic theory and description[edit] Quantum spin versus classical magnet in the Stern–Gerlach experiment Basic elements of the Stern–Gerlach experiment. The Stern–Gerlach experiment involves sending a beam of particles through an inhomogeneous magnetic field and observing their deflection. The experiment is normally conducted using electrically neutral particles or atoms. If the experiment is conducted using charged particles like electrons, there will be a Lorentz force that tends to bend the trajectory in a circle (see cyclotron motion). Spin values for fermions. Electrons are spin-1⁄2 particles. For electrons there are two possible values for the spin angular momentum that is measured along an axis. To describe the experiment with spin +1⁄2 particles mathematically, it is easiest to use Dirac's bra–ket notation. The constants c1 and c2 are complex numbers. one of the two possible values of j is found. Sequential experiments[edit] History[edit] In 1927, T.E. Importance[edit] See also[edit]

RANDOM.ORG - True Random Number Service שרדינגר עושה חיים Schrodinger להורדה: שרדינגר.PDF (פורסם לראשונה ב"קשת החדשה" 2005. אבשלום אליצור שרדינגר עושה חיים שבוע בטירול, אוגוסט 2005 אנשים רואים דברים כפי שהם ושואלים: למה? רוברט קנדי א. עמק ארוך מבתר את רכס הרי טירול בדרומה של אוסטריה ובתחתיתו זורם האַלפּבַּאך, הוא "פלג האלפים," נחל עתיר-יובלים, קופצני וסואן, שהרבה פינות-חמד בין פיתוליו כבר נהירות לי היטב, ומעליו הכפר המצועצע הקרוי על שמו. אבל זוהי אוסטריה, וגם זיכרונות פחות לבביים ניעורים כאן מדי פעם. "מיין הֶר?" זמן קצר לאחר מלחמת העולם השנייה, כשבעלות-הברית עוד שלטו כאן והמזון היה עוד מוקצב, באו לאַלפּבַּאך שני אחים, יוצאי המחתרת האנטי-נאצית, והקימו בו בית-ספר שהוציא את שמו בעולם. לכן, לפני שנתיים, התרחב הלב כשהגיעה ההזמנה מאנטון ציילינגר, אחד הפיסיקאים הבולטים בעולם, ללמד אתו כאן קורס על תורת הקוונטים. ב. עכשיו חזרתי לכאן עם הזמנה נוספת, ללמד קורס על יישומיה הביולוגיים של תורת האינפורמציה יחד עם פטר שוסטר, כימאי מווינה, ואֵוּרש סַאטמַרי, ביולוג מבודאפשט. בין מייסדי הפיסיקה החדשה מתבדל שרדינגר כדמות לעצמה. עננה עוברת על פני רות כשאני מזכיר את הסיפור. ג. ד.

Interaction-free measurement In physics, interaction-free measurement is a type of measurement in quantum mechanics that detects the position or state of an object without an interaction occurring between it and the measuring device. Examples include the Renninger negative-result experiment, the Elitzur–Vaidman bomb-testing problem, and certain double-cavity optical systems. See also[edit] Counterfactual definiteness References[edit] Mauritius Renninger, Messungen ohne Storung des Messobjekts (Observations without disturbing the object), (1960) Zeitschrift für Physik, 158 pp 417-421.Mauritius Renninger, (1953) Zeitschrift für Physik, 136 p. 251Louis de Broglie, The Current Interpretation of Wave Mechanics, (1964) Elsevier, Amsterdam.

Franck–Hertz experiment Photograph of a vacuum tube with a drop of mercury that's used for the Franck–Hertz experiment in instructional laboratories. A - anode disk. G - metal mesh grid. C - cathode assembly; the cathode itself is hot, and glows orange. The Franck–Hertz experiment was the first electrical measurement to clearly show the quantum nature of atoms, and thus "transformed our understanding of the world".[1] It was presented on April 24, 1914 to the German Physical Society in a paper by James Franck and Gustav Hertz.[2][3] Franck and Hertz had designed a vacuum tube for studying energetic electrons that flew through a thin vapor of mercury atoms. They discovered that, when an electron collided with a mercury atom, it could lose only a specific quantity of its kinetic energy (7.8×10-19 joules or 4.9 electron volts). These experimental results proved to be consistent with the Bohr model for atoms that had been proposed the previous year by Niels Bohr. The experiment[edit] Effect in other gases[edit]

Slashbot: The Guitar Hero Robot | A Texas A&M Electrical Engineering Project Erwin Schrödinger Erwin Rudolf Josef Alexander Schrödinger (/ˈʃroʊdɪŋər/; German: [ˈɛʁviːn ˈʃʁøːdɪŋɐ]; 12 August 1887 – 4 January 1961), a Nobel Prize-winning Austrian physicist who developed a number of fundamental results in the field of quantum theory, which formed the basis of wave mechanics: he formulated the wave equation (stationary and time-dependent Schrödinger equation) and revealed the identity of his development of the formalism and matrix mechanics. Schrödinger proposed an original interpretation of the physical meaning of the wave function and in subsequent years repeatedly criticized the conventional Copenhagen interpretation of quantum mechanics (using e.g. the paradox of Schrödinger's cat). In addition, he was the author of many works in various fields of physics: statistical mechanics and thermodynamics, physics of dielectrics, color theory, electrodynamics, general relativity, and cosmology, and he made several attempts to construct a unified field theory. In his book What Is Life?