background preloader

Systems Thinking

Systems Thinking
© Copyright Carter McNamara, MBA, PhD, Authenticity Consulting, LLC. Adapted from the Field Guide to Consulting and Organizational Development and Field Guide to Consulting and Organizational Development with Nonprofits. Three of the biggest breakthroughs in how we understand and successfully guide changes in ourselves, others and organizations are systems theory, systems thinking and systems tools. Sections of This Topic Include Basics -- Definitions - - - What's a System? Also seeRelated Library Topics Also See the Library's Blogs Related to Systems Theory, Chaos Theory and Systems Thinking In addition to the articles on this current page, also see the following blogs that have posts related to Systems Theory, Chaos Theory and Systems Thinking . Library's Business Planning BlogLibrary's Building a Business BlogLibrary's Coaching BlogLibrary's Consulting and Organizational Development BlogLibrary's Leadership BlogLibrary's Strategic Planning BlogLibrary's Supervision Blog What's a System? Related:  Systems ThinkingSystem Theory

Develop Systems Thinking To cope with complexity, leaders have been taught to divide things into simpler component parts and to manage these as best they can. This often leads to today’s solutions creating tomorrow’s problems. Systems thinking is required for long term leadership success in our complex world. This Workplace Development Guide provides 10 activities to develop your systems thinking while you work. Systems thinking will give you a more accurate picture of reality so that you can work with a system's natural forces in order to achieve the results you desire. Your solutions will have greater viability in the long term through mitigating unintended consequences. 'Develop Systems Thinking' is one of a series of Workplace Development Guides designed to provide you with practical and convenient e-learning activities that you can integrate with your everyday work as part of your ongoing leadership development. Purchase in 3 easy steps

THE GENERAL SYSTEM? REVIEWED by Charles Francois, Editor, International Encyclopedia of Cybernetics and Systemics By Thomas Mandel "A human being is part of the Whole...He experiences himself, his thoughts and feelings, as something separated from the rest...a kind of optical delusion of his consciousness. This delusion is a kind of prison for us, restricting us to our personal desires and to affection for a few persons nearest us. Our task must be to free ourselves from this prison by widening our circle of compassion to embrace all living creatures and the whole of nature in its beauty. Nobody is able to achieve this completely, but the striving for such achievement is, in itself, a part of the liberation and a foundation for inner security". [11] "My friend, all theory is gray, and the Golden tree of life is green." It is time we, especially we in the systems movement, stop fighting amongst ourselves. The subject of a General Principle, a.k.a. The idea of a General System is not necessarily new.

Systems thinking Impression of systems thinking about society[1] A system is composed of interrelated parts or components (structures) that cooperate in processes (behavior). Natural systems include biological entities, ocean currents, the climate, the solar system and ecosystems. Designed systems include airplanes, software systems, technologies and machines of all kinds, government agencies and business systems. Systems Thinking has at least some roots in the General System Theory that was advanced by Ludwig von Bertalanffy in the 1940s and furthered by Ross Ashby in the 1950s. The term Systems Thinking is sometimes used as a broad catch-all heading for the process of understanding how systems behave, interact with their environment and influence each other. Systems thinking has been applied to problem solving, by viewing "problems" as parts of an overall system, rather than reacting to specific parts, outcomes or events and potentially contributing to further development of unintended consequences.

untitled What is Systems Theory? Systems theory is an interdisciplinary theory about the nature of complex systems in nature, society, and science, and is a framework by which one can investigate and/or describe any group of objects that work together to produce some result. This could be a single organism, any organization or society, or any electro-mechanical or informational artifact. As a technical and general academic area of study it predominantly refers to the science of systems that resulted from Bertalanffy's General System Theory (GST), among others, in initiating what became a project of systems research and practice. Systems theoretical approaches were later appropriated in other fields, such as in the structural functionalist sociology of Talcott Parsons and Niklas Luhmann. Overview Margaret Mead was an influential figure in systems theory. Contemporary ideas from systems theory have grown with diversified areas, exemplified by the work of Béla H. A system from this Russell Ackoff, Béla H. History Cybernetics

BBC Systems Practice - Resources Copyrighted image Credit: The Open University Open2.net fades away... For ten years, give or take, Open2.net was the online home of Open University and BBC programming. Over the last few months, though, we've been moving into OpenLearn, creating one home for all The Open University's free learning content. It means we share a home with the Open University's iTunesU and YouTube channels, and much more besides. You can use the navigation at the top of this page to explore what we have on offer. There's lots to do - you could watch Evan Davis exploring the state of British manufacturing7; explore the frozen planet8; get to know the science and history of the Olympics9 or have a look at our free courses. Most of the content from Open2.net has been brought across; if you've landed here after typing or searching for an Open2.net URL then you're probably looking for something that fitted into one of these categories: Open2 forums We still want you to join in, comment and share your views.

Current Thinking - Systems Thinking System dynamics Dynamic stock and flow diagram of model New product adoption (model from article by John Sterman 2001) System dynamics is an approach to understanding the behaviour of complex systems over time. It deals with internal feedback loops and time delays that affect the behaviour of the entire system.[1] What makes using system dynamics different from other approaches to studying complex systems is the use of feedback loops and stocks and flows. These elements help describe how even seemingly simple systems display baffling nonlinearity. Overview[edit] System dynamics (SD) is a methodology and mathematical modeling technique for framing, understanding, and discussing complex issues and problems. Convenient GUI system dynamics software developed into user friendly versions by the 1990s and have been applied to diverse systems. System dynamics is an aspect of systems theory as a method for understanding the dynamic behavior of complex systems. History[edit] Topics in systems dynamics[edit]

untitled Systems theory Systems theory is the interdisciplinary study of systems in general, with the goal of elucidating principles that can be applied to all types of systems at all nesting levels in all fields of research.[citation needed] The term does not yet have a well-established, precise meaning, but systems theory can reasonably be considered a specialization of systems thinking; alternatively as a goal output of systems science and systems engineering, with an emphasis on generality useful across a broad range of systems (versus the particular models of individual fields). A central topic of systems theory is self-regulating systems, i.e. systems self-correcting through feedback. Overview[edit] Contemporary ideas from systems theory have grown with diverse areas, exemplified by the work of biologist Ludwig von Bertalanffy, linguist Béla H. The systems view is a world-view that is based on the discipline of SYSTEM INQUIRY. Examples of applications[edit] Systems biology[edit] Systems engineering[edit]

untitled Homeostasis Homeostasis, also spelled homoeostasis (from Greek: ὅμοιος homœos, "similar" and στάσις stasis, "standing still"), is the property of a system in which variables are regulated so that internal conditions remain stable and relatively constant. Examples of homeostasis include the regulation of temperature and the balance between acidity and alkalinity (pH). It is a process that maintains the stability of the human body's internal environment in response to changes in external conditions. The concept was described by French physiologist Claude Bernard in 1865 and the word was coined by Walter Bradford Cannon in 1926.[1] Although the term was originally used to refer to processes within living organisms, it is frequently applied to automatic control systems such as thermostats. Biological[edit] Principal Homeostatic processes include the following: Regulation of the pH of the blood at 7.365 (a measure of alkalinity and acidity).All animals also regulate their blood glucose concentration.

Traits that enable Systems Thinking Systems engineering Systems engineering techniques are used in complex projects: spacecraft design, computer chip design, robotics, software integration, and bridge building. Systems engineering uses a host of tools that include modeling and simulation, requirements analysis and scheduling to manage complexity. Systems engineering is an interdisciplinary field of engineering that focuses on how to design and manage complex engineering systems over their life cycles. Issues such as requirements engineering, reliability, logistics, coordination of different teams, testing and evaluation, maintainability and many other disciplines necessary for successful system development, design, implementation, and ultimate decommission become more difficult when dealing with large or complex projects. Systems engineering deals with work-processes, optimization methods, and risk management tools in such projects. The systems engineering process is a discovery process that is quite unlike a manufacturing process.

Related: