background preloader

FT-IR Spectrum Analysis of Pharmaceuticals Compounds

FT-IR Spectrum Analysis of Pharmaceuticals Compounds

http://www.academia.edu/15362706/An_Impact_of_Biofield_Treatment_on_Spectroscopic_Characterization_of_Pharmaceutical_Compounds

Related:  Evaluation of Biofield TreatmentBiofield TreatmentHuman Energy TreatmentEnergy Medicinemikeandersonm

Human Energy Impact on Stenotrophomonas maltophilia Stenotrophomonas maltophilia ( S. maltophilia ) is a Gram-negative bacillus, an opportunistic pathogen, particularly among nosocomial infections. Multi-drug resistant strains are associated with very high rate of morbidity and mortality in severely immunocompromised patients. Present study was designed to evaluate the effect of biofield treatment against multidrug resistant S. maltophilia . Clinical sample of S. maltophilia was collected and divided into two groups i.e. control and biofield treated which were analyzed after 10 days with respect to control. The following parameters viz. susceptibility pattern, minimum inhibitory concentration (MIC), biochemical studies and biotype number of both control and treated samples were measured by MicroScan Walk-Away® system. The results showed an overall change of 37.5% in susceptibility pattern and 39.4% in biochemical study while 33.3% changes in MIC values of tested antimicrobials after biofield treatment.

Characterization of Silicon Carbide Powder Description Silicon carbide (SiC) is a well-known ceramic due to its excellent spectral absorbance and thermo-mechanical properties. The wide band gap, high melting point and thermal conductivity of SiC is used in high temperature applications. The present study was undertaken to investigate the effect of biofield treatment on physical, atomic, and structural characteristics of SiC powder. The control and biofield treated SiC powder was analysed using X-ray diffraction (XRD), particle size analyzer, surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy techniques with respect to control.

Pharmaceutical Compounds Abstract The stability of any pharmaceutical compound is most desired quality that determines its shelf life and effectiveness. The stability can be correlated to structural and bonding properties of compound and any variation arise in these properties can be easily determined by spectroscopic analysis. The present study was aimed to evaluate the impact of biofield treatment on these properties of four pharmaceutical compounds such as urea, thiourea, sodium carbonate, and magnesium sulphate, using spectroscopic analysis. Each compound was divided into two groups, referred as control and treatment.

Spectroscopic Characterization of Pharmaceuticals Compound Description The stability of any pharmaceutical compound is most desired quality that determines its shelf life and effectiveness. The stability can be correlated to structural and bonding properties of compound and any variation arise in these properties can be easily determined by spectroscopic analysis. The present study was aimed to evaluate the impact of biofield treatment on these properties of four pharmaceutical compounds such as urea, thiourea, sodium carbonate, and magnesium sulphate, using spectroscopic analysis. Each compound was divided into two groups, referred as control and treatment.

Magnesium Sulphate FT-IR Analysis- Energy Treatment Assessment 0WordPress0CiteULike0 24 The stability of any pharmaceutical compound is most desired quality that determines its shelf life and effectiveness.The stability can be correlated to structural and bonding properties of compound and any variation arise in these properties can be easily determined by spectroscopic analysis. The present study was aimed to evaluate the impact of biofield treatment on these properties of four pharmaceutical compounds such as urea, thiourea, sodium carbonate,and magnesium sulphate, using spectroscopic analysis. Study of Biofield Treated S. maltophilia Serratia marcescens (S. marcescens) is Gram-negative bacterium, associated with hospital-acquired infections (HAIs), especially urinary tract and wound infections. The present study was aimed to evaluate the impact of biofield treatment on phenotyping and genotyping characteristics such as antimicrobial susceptibility, biochemical reactions, biotype, DNA polymorphism, and phylogenetic relationship of S. marcescens (ATCC 13880). The lyophilized cells of S. marcescens were divided into three groups (G1, G2, and G3).

Biofield Treatment Trivedi MK2, Nayak G2, Tallapragada RM2, Patil S2, Latiyal O1 and Jana S1* 1Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Road, Bhopal-462026, Madhya Pradesh, India 2Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA *Corresponding Author: Jana S Trivedi Science Research Laboratory Pvt.

Biofield Energy Treatment' Pharmaceutical Compounds The stability of any pharmaceutical compound is most desired quality that determines its shelf life and effectiveness. The stability can be correlated to structural and bonding properties of compound and any variation arise in these properties can be easily determined by spectroscopic analysis. The present study was aimed to evaluate the impact of biofield treatment on these properties of four pharmaceutical compounds such as urea, thiourea, sodium carbonate, and magnesium sulphate, using spectroscopic analysis. Each compound was divided into two groups, referred as control and treatment. The control groups remained as untreated and treatment group of each compound received Mr.

Variation in Spectral Properties of Pharmaceuticals Compound Title: An Impact of Biofield Treatment on Spectroscopic Characterization of Pharmaceutical Compounds Publication: Biofield Impact on Klebsiella Pneumoniae Characteristics Citation: Trivedi MK, Branton A, Trivedi D, Shettigar H, Gangwar M, et al. (2015) Antibiogram Typing and Biochemical Characterization of Klebsiella Pneumonia after Bioeld Treatment. J Trop Dis 3: 173. doi:10.4173/2329891X.1000173 Page 2 of 6 Volume 3 • Issue 4 • 1000173

Related:  Biofield Science