background preloader

Biofield Effect on Spectral Properties of Paracetamol and Piroxicam

Biofield Effect on Spectral Properties of Paracetamol and Piroxicam
Abstract Paracetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain and inflammatory diseases. The present study aimed to evaluate the impact of biofield treatment on spectral properties of paracetamol and piroxicam. The study was performed in two groups (control and treatment) of each drug. The control groups remained as untreated, and biofield treatment was given to treatment groups. Subsequently, spectral properties of both drugs before and after biofield treatment were characterized using FT-IR and UV-Vis spectroscopic techniques. Related:  The Trivedi EffectMahendra Trivedi's Biofield EnergyThe Trivedi Effect

Biofield and Its Impact on Stenotrophomonas maltophilia Biofield treatment was reported as an alternative therapy and termed as frontier medicine in different fields [19]. This experimental study was designed to demonstrate the effect on susceptibility pattern, biochemical reaction and biotype number after biofield treatment in MDR strain of S. maltophilia. The emergence of MDR of S. maltophilia harbored a global health problem and an emerging Gram-negative MDROs commonly associated with severe systemic and respiratory infections in human. MDR is an unavoidable natural phenomenon which compels continuous discovery of newer drugs causing serious public health problems. Various mechanisms involved in MDR include alteration in the cell membrane composition of microorganism resulting in decreased permeability and uptake of drugs into the cell [20], overexpression of drug target enzymes or altered the drug target through mutation [21], and drug efflux pumps remains the predominant mechanism in MDRO [22].

Biofield Energy Treated MDR Raoultella ornithinolytica MDR emergence of R. ornithinolytica is a global health problem commonly associated with bacteremia, urinary tract infection, neonatal infections, and exist in underlying existing infection [6,26,27]. Increasing resistance in microorganism for antimicrobials becomes a major threat to health and economic problem which ultimately leads to allowing survival of the resistant bacteria and death of the susceptible ones. Major mechanistic pathways associated with resistant in microorganism are cell membrane alterations, which lead to decreased uptake of drug [28]; mutation occurs, that lead to over expression of drug target enzymes and the other common mechanism being the drug efflux pump [29]. Now-a-days, R. ornithinolytica acquired resistance against broad range of antimicrobials. Several phenotypic biochemical identification tests were available to differentiate the Raoultella species. Overall results of antimicrobial assay suggest that Mr.

Biofield Treatment Effects on Properties of Antimony Sulfide Trivedi MK, Nayak G, Patil S*, Tallapragada RM and Latiyal O Trivedi Global Inc,10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA *Corresponding Author: Patil S Trivedi Global Inc 10624 S Eastern Avenue Suite A-969 Henderson NV 89052, USA Tel: +1 602-531-5400 E-mail: publication@trivedieffect.com Received: June 02, 2015 Accepted: July 15, 2015 Published: July 17, 2015 Citation: Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Impact of Biofield Treatment on Physical, Structural and Spectral Properties of Antimony Sulfide. Copyright: © 2015 Trivedi MK, et al. Visit for more related articles at Industrial Engineering & Management Abstract Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. Keywords Biofield treatment; Antimony sulfide; X-ray diffraction; FT-IR; Particle size; Surface area; Scanning electron microscopy Introduction Experimental Particle size analysis Conclusion

Biofield Energy | Characteristics of Ceramic Oxide Nano Powders Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil*, Rama Mohan Tallapragada and Omprakash Latiyal Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA *Corresponding Author: Shrikant Patil Trivedi Global Inc 10624 S Eastern Avenue Suite A-969, Henderson NV 89052, USA Tel: +1 602-531-5400 E-mail: publication@trivedieffect.com Received: April 23, 2015 Accepted: June 15, 2015 Published: June 17, 2015 Citation: Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano Powders after Bio field Treatment. Copyright: © 2015 Trivedi MK, et al. Visit for more related articles at Industrial Engineering & Management Abstract Transition metal oxides (TMOs) have been known for their extraordinary electrical and magnetic properties. Keywords Biofield treatment; Iron oxide; Copper oxide; Zinc oxide; X-ray diffraction; FT-IR Introduction Experimental Procedure Crystallite size=k λ/b Cos θ Conclusion

Study of Antimicrobial susceptibility of S. Marcescens Abstract Serratia marcescens (S. marcescens) is Gram-negative bacterium, associated with hospital-acquired infections (HAIs), especially urinary tract and wound infections. The present study was aimed to evaluate the impact of biofield treatment on phenotyping and genotyping characteristics such as antimicrobial susceptibility, biochemical reactions, biotype, DNA polymorphism, and phylogenetic relationship of S. marcescens (ATCC 13880). Keywords: Antimicrobials; Biofield treatment; Polymorphism; Microbial resistance; RAPD; S. marcescens Introduction Currently, many microorganisms have been acquired the resistance to number of antibiotics and other antimicrobial agents, which were effectively used earlier to cure a microbial infections. The relation between mass-energy was described Friedrich, then after Einstein gave the well-known equation E=mc2 for light and mass [4,5]. Materials and Methods Study design Investigation of antimicrobial susceptibility of S. marcescens Biochemical studies 1.

Mahendra Kumar Trivedi - Biofield Researcher | MyScienceWork Mahendra Kumar Trivedi has completed his 5-year Bachelor’s degree in Mechanical Engineering in 1985 and had worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered had the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. For the next 5-7 years, Trivedi applied this newfound discovery to helping people optimize their potential, and this unique phenomenon resulting from Mr. Although Mr. He amassed a collection of over 4,000 scientific studies in many life sciences and material sciences, including: agriculture, livestock, biotechnology, microbiology, materials science, genetics, cancer and human health and has several dozens of publications in leading international peer-reviewed scientific journals, all in support to the dramatic results reported through human testimonials, thus excluding the possibility of the placebo effect. Mr. Mr.

Mahendra Kumar Trivedi | Biofield Energy Therapy | ORCID Mahendra Kumar Trivedi completed his 5-year Bachelor’s degree in Mechanical Engineering in 1985 and had worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered his unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. For the next 5-7 years, Mahendra Trivedi applied this newfound discovery to helping people to optimize their potential, and this unique phenomenon resulting from Mr. Trivedi’s biofield energy treatments became internationally renowned as The Trivedi Effect®.

Mahendra Kumar Trivedi | Biofield Publications | FlipSnack Mahendra Kumar Trivedi earned his 5-year Bachelor’s degree in Mechanical Engineering in 1985 and worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he had the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. For the next 5-7 years, Trivedi applied this newfound discovery to helping people optimize their potential, and this unique phenomenon resulting from Mr. Trivedi’s biofield energy treatments became internationally renown as The Trivedi Effect®. Although Mr.

Human Biofield Energy Treatment Effect on Silicon Carbide Properties Abstract Silicon carbide (SiC) is a well-known ceramic due to its excellent spectral absorbance and thermo-mechanical properties. The wide band gap, high melting point and thermal conductivity of SiC is used in high temperature applications. The present study was undertaken to investigate the effect of biofield treatment on physical, atomic, and structural characteristics of SiC powder. Tables at a glance Figures at a glance

Mahendra Kumar Trivedi's Peer-Reviewed Encyclopedia The Trivedi Effect, Henderson, USA Mr. Mahendra TrivediFounder and Chairmen Affiliation: Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA Biography Mr. Research Interest Exploration and exploitation of The Trivedi Effect® in various research areas of agriculture, animal production, biotechnology, microbiology, material science, genetics, cancer, pharmaceuticals and nutraceuticals. You can read more about Mr. 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). 11). 12). 13). 14).

Mahendra Kumar Trivedi's Scientific Studies on Mendeley Mahendra Kumar Trivedi completed his 5-year Bachelor’s degree in Mechanical Engineering in 1985 and had worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered has the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential.

Mahendra Kumar Trivedi : A Biofield Researcher | Academia.edu The objective of the current study was to evaluate the effect of biofield energy treatment on the isotopic abundance ratios of P M+1/PM, PM+2/PM, PM+3/PMand PM+4/PM in p-DCB using gas chromatography-mass spectrometry ... more abstractThe objective of the current study was to evaluate the effect of biofield energy treatment on the isotopic abundance ratios of P M+1/PM, PM+2/PM, PM+3/PMand PM+4/PM in p-DCB using gas chromatography-mass spectrometry (GC-MS). The p-DCB was divided into two parts - one part was control sample, and another part was considered as the treated sample which was subjected to biofield energy treatment (The Trivedi Effect®). T1, T2, T3, and T4 were referred the biofield treated p-DCB having analyzed at different time intervals. The GC-MS analysis of both the control and biofield treated p-DCB indicated the presence of the parent molecular ion peak at m/z 146 along with four major fragmentation peaks at m/z 111, 75, 55 and 50. Publisher: Science Publishing Group

Related: