background preloader

Characterization of P-Chloro-M-Cresol

Characterization of P-Chloro-M-Cresol
Abstract p-Chloro-m-cresol (PCMC) is widely used in pharmaceutical industries as biocide and preservative. However, it faces the problems of solubility in water and photo degradation. Keywords: Biofield treatment; p-chloro-m-cresol; X-ray diffraction; Surface area analysis; Differential scanning calorimetry; Thermogravimetric analysis; Fourier transform infrared spectroscopy; Ultraviolet-visible spectroscopy; Gas chromatography-mass spectrometry Introduction p-Chloro-m-cresol (PCMC) which is also known as chlorocresol (Figure 1), is used as an external germicide and bactericide agent. Figure 1: Chemical structure of p-chloro-m-cresol. Although PCMC is widely used in pharmaceutical preparations but its effectiveness was reduced due to some problems related to solubility and stability [9]. Materials and Methods Sample preparation P-chloro-m-cresol (PCMC) was procured from Sisco Research Laboratories, India. X-ray diffraction (XRD) study G=kλ/ (bCosθ) Surface area analysis Spectroscopic studies 1. Related:  Biofield Energy Treatment

Physical, Spectral and Thermal Properties of Resorcinol Abstract Resorcinol is widely used in manufacturing of several drugs and pharmaceutical products that are mainly used for topical ailments. The main objective of this study is to use an alternative strategy i.e., biofield treatment to alter the physical, spectral and thermal properties of resorcinol. Keywords: Resorcinol; Biofield energy treatment; X-Ray diffraction; Fourier transform infrared spectroscopy; Ultraviolet-Visible spectroscopy; Differential scanning calorimetry; Thermogravimetric analysis Abbreviations XRD: X-Ray Diffraction; FT-IR: Fourier Transform Infrared; DSC: Differential Scanning Calorimetry; TGA: Thermogravimetric Analysis; DTG: Derivative Thermogravimetry; NCCAM: National Centre for Complementary and Alternative Medicine Introduction Resorcinol is a dihydric phenol having the hydroxyl group at 1 and 3 positions in the benzene ring [1]. Materials and Methods Study design Resorcinol was procured from Loba Chemie Pvt. X-ray diffraction (XRD) study G=kλ/(bCosθ) FT-IR analysis

Biofield Treated Cotton | Spectral & Thermal Properties Abstract Cotton has widespread applications in textile industries due its interesting physicochemical properties. The objective of this study was to investigate the influence of biofield energy treatment on the spectral, and thermal properties of the cotton. The study was executed in two groups namely control and treated. The control group persisted as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. Keywords: Cotton, Biofield Energy Treatment, Thermal Analysis, Fourier Transform Infrared Spectroscopy, CHNSO Analysis 1. Cotton is the most popularly used textile fiber due to its easy availability, low cost as well as good mechanical and physical properties. Energy medicine, energy therapy, and energy healing are the divisions of alternative medicine. Hence, by considering the outcomes of unique Mr. 2. Cotton was procured from Sigma Aldrich, USA. 2.1. Where, ΔHControl and ΔHTreated are the latent heat of fusion of control and treated samples, respectively.

Thiourea, Sodium Carbonate IR Spectrum Analysis Abstract The stability of any pharmaceutical compound is most desired quality that determines its shelf life and effectiveness.The stability can be correlated to structural and bonding properties of compound and any variation arise in these properties can be easily determined by spectroscopic analysis. The present study was aimed to evaluate the impact of biofield treatment on these properties of four pharmaceutical compounds such as urea, thiourea, sodium carbonate,and magnesium sulphate, using spectroscopic analysis. Each compound was divided into two groups, referred as control and treatment. The control groups remained as untreated and treatment group of each compound received Mr. Trivedi’s biofield treatment. Keywords: Urea; Thiourea; Sodium carbonate; Magnesium sulphate; Biofield treatment; Fourier transform infrared spectroscopy;Ultraviolet-visible spectroscopy Introduction Sodium carbonate, commonly known as washing soda, is sodium salt of carbonic acid. Materials and Methods 1.

Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated p-Phenylenediamine and p-Toluidine - Trivedi Science Abstract Aromatic amines and their derivatives are widely used in the production of dyes, cosmetics, medicines and polymers. However, they pose a threat to the environment due to their hazardous wastes as well as their carcinogenic properties. The objective of the study was to use an alternate strategy i.e. biofield energy treatment and analyse its impact on physicochemical properties of aromatic amine derivatives viz. p-phenylenediamine (PPD) and p-toluidine. For this study, both the samples were taken and divided into two parts. Keywords: Biofield energy treatment; p-Phenylenediamine; p-Toluidine; X-ray diffraction; Surface area analysis; Thermogravimetric analysis; Fourier transform infrared spectroscopy; Ultraviolet-visible spectroscopy Abbreviations: PPD: para-Phenylenediamine; XRD: X-ray diffraction; BET: Brunauer–Emmett–Teller; TGA/DTG: Thermogravimetric analysis/Derivative thermogravimetry; DTG: Derivative thermogravimetry; FT-IR: Fourier transform infrared Introduction Conclusion

Physical, Thermal & Spectral Properties of Butylated Hydroxytoluene Abstract The antioxidants play an important role in the preservation of foods and the management of oxidative stress related diseases by acting on reactive oxygen species and free radicals. However, their use in high temperature processed food and pharmaceuticals are limited due to its low thermal stability. The objective of the study was to use the biofield energy treatment on butylated hydroxytoluene (BHT) i.e. antioxidant and analyse its impact on the physical, thermal, and spectral properties of BHT. Keywords: Biofield energy treatment; Butylated hydroxytoluene; Reactive oxygen species; Complementary and alternative medicine; Thermogravimetric analysis Introduction In recent years, the studies on reactive oxygen species (ROS), free radicals and antioxidants are generating medical revolution by promising a good health and disease management [1]. Figure 1: Chemical structure of butylated hydroxytoluene. In food preservation process, the thermal stability of antioxidant is very crucial.

2,4-Dichlorophenol Physicochemical Properties | Biofield Treatment Abstract The chlorinated phenols are widely used in chemical industries for the manufacturing of herbicides, insecticides, etc. However, due to consistent use they create hazards to the environment. This study was designed to use an alternative method i.e. biofield energy treatment and analyse its impact on the physicochemical properties of 2,4-dichlorophenol (2,4- DCP), which are the important factors related to its degradation. Keywords: 2,4-Dichlorophenol, Biofield Energy Treatment, Pollutants, Complementary and Alternative Medicine 1. The chlorinated derivatives of phenols are an important class of pollutants that originate from the industrial chemicals [1]. When a chemical enters the environment, it distributes itself in the different compartments viz. air, water, soil and living organisms. 2. 2,4-Dichlorophenol (2,4-DCP) was procured from Loba Chemie Pvt. 2.1. The crystallite size (G) was calculated from the Scherrer equation: G = kλ/(bCosθ) (1) 2.2. 2.2.1. 2.2.2. 2.3. 2.4. 3. 3.1.

Analysis of Phenol Derivatives Isotopic Abundance in BHT & 4-MP Abstract Butylatedhydroxytoluene (BHT) and 4-methoxyphenol (4-MP) are phenol derivatives that are generally known for their antioxidant properties and depigmenting activities. The aim of this study was to evaluate the impact of biofield energy treatment on the isotopic abundance in BHT and 4-MP using gas chromatography-mass spectrometry (GC-MS). BHT and 4-MP samples were divided into two parts: control and treated. The control group remained untreated while the treated group was subjected to Mr. Keywords: Biofield energy treatment; Butylatedhydroxytoluene; Gas chromatography-mass spectrometry; 4-methoxyphenol; Isotopic abundance Abbreviations GC-MS: Gas Chromatography-Mass spectrometry; PM: Primary Molecule; PM+1: Isotopic molecule either for 13C/12C or 2H/1H; PM+2:Isotopic molecule for 18O/16O; BHT: Butylatedhydroxytoluene; 4-MP:4-methoxyphenol Introduction For example, 13C, atom percent 13C=[13C/(12C+13C)] × 100 Experimental Both BHT and 4-MP were procured from SD Fine Chem. GC-MS method 1.

Spectral & Physical Properties of DPCIM, Date Palm Callus Initiation Medium Abstract The date palm is mainly cultivated for the production of sweet fruit. Date palm callus initiation medium (DPCIM) is used for plant tissue culture applications. The present work is intended to evaluate the impact of Mr. Trivedi’s biofield energy treatment on physical, thermal and spectral properties of the DPCIM. The control and treated DPCIM were evaluated by various analytical techniques such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, particle size analyzer (PSA), surface area analyzer and ultra violet-visible spectroscopy (UV-vis) analysis. Keywords: Biofield Energy Treatment, Date Palm Callus Initiation Medium, X-ray Diffraction, Thermal Analysis, Particle Size Analysis, Surface Area Analysis 1. Date palm or Phoenix dactylifera is a flowering plant belongs to the family Arecaceae, cultivated for its sweet fruits [1]. Mr. Table 1. 2. 2.1. G = kλ/(bCosθ) 2.2. 2.3. 2.4.

Thermal & Physical Properties of Silver Oxide Powder Abstract Silver oxide has gained significant attention due to its antimicrobial activities. The purpose of this study was to evaluate the impact of biofield energy treatment on the physical and thermal properties of silver oxide (Ag2O). The silver oxide powder was divided into two parts, one part was kept as control and another part was received Mr. Trivedi’s biofield energy treatment. The control and treated samples were analyzed using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. Keywords: Silver Oxide, Biofield Energy Treatment, X-Ray Diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy 1. Silver (Ag) is a naturally occurring ductile and malleable element. 2. Silver oxide powder was procured from Sigma Aldrich, USA. 2.1. The crystallite size (D) was calculated by using Scherrer equation as following: D = kλ/(bCosθ) 3.

Physicochemical and Spectroscopic Properties of Biofield Energy Treated Protose - Trivedi Science Abstract Protose is the enzyme digest of mixed proteins that is recommended for culture media, bulk production of enzymes, antibiotics, toxins, veterinary preparations, etc. This study was proposed to evaluate the effect of biofield energy treatment on the physicochemical and spectroscopic properties of protose. Keywords: Biofield Energy Treatment, Protose, X-ray Diffraction, Particle Size Analysis, Surface Area Analysis, Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy 1. Growth medium or culture medium is a liquid or gel that is designed for the growth of microorganisms, cells or small plants such as moss [1]. Despite lots of applications of culture media, the thermal stability and chemical stability are the important attributes of any culture media. The energy therapies include magnet therapy, bio-electromagnetic therapy, healing touch, etc. and comprise low-level of energy field exchanges [10]. 2. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 3. 3.1. Fig. 1. 3.2. 3.3.

Alteration in Proteus Vulgaris Antimicrobials Susceptibility Pattern Abstract Proteus vulgaris (P. vulgaris) is widespread in nature, mainly found in flora of human gastrointestinal tract. The current study was attempted to investigate the effects of Mr. Keywords: Proteus vulgaris, Antimicrobial Susceptibility, Biofield Treatment, Biochemical Reaction, Biotype, 16S rDNA Analysis 1. Proteus vulgaris (P. vulgaris) is a genus of Gram-negative bacteria widespread in the environment and also found in normal gut flora of the human. Due to the clinical significance of this organism and literature reports on biofield treatment, the present work was undertaken to evaluate the impact of biofield treatment on P. vulgaris in relation to antimicrobials susceptibility and biotyping based on various biochemical characters followed by 16S rDNA sequencing analysis. 2. P. vulgaris, American Type Culture Collection (ATCC 33420) strain was procured from Micro BioLogics, Inc., USA and stored with proper storage conditions until further use. 2.1. Group IIB – Study I 2.2. 2.3.

SFRE 199-1 Spectral Properties, Mammalian Cell Culture Medium Abstract SFRE 199-1 medium (SFRE-M) is important mammalian cell culture medium, used for the culture of primary cells of mammals such as baboon kidney cells. The present study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal and spectral properties of SFRE-M. Keywords: Biofield Energy Treatment, SFRE-Medium, Elemental Analysis, X-ray Diffraction, Fourier Transform Infrared Spectroscopy 1. Medium M-199 is a well-defined nutritional source for cell culture media, developed in 1950 by Morgan et al. [1, 2]. Sterilization process plays a significant role on the quality of culture media. Recently, the energy healing therapies have been reported for several beneficial effects throughout the word. The energy medicines have been categorized by National Center for Complementary and Alternative Medicine (NCCAM) under the CAM therapies [12]. 2. 2.1. The SFRE 199-1 media (SFRE-M) was procured from HiMedia Laboratories, India. Table 1. 2.2. 2.3. 2.4. Fig. 1.

Physical & Thermal Characteristics of Selenium Abstract Selenium (Se) is an essential trace element, and its deficiency in the humans leads to increase the risk of various diseases, such as cancer and heart diseases. The objective of this study was to investigate the influence of biofield energy treatment on the physical and thermal properties of the selenium powder. The selenium powder was divided into two parts denoted as control and treated. Keywords: Biofield Energy Treatment, Selenium Powder, X-ray Diffraction, Thermogravimetric Analysis – Differential Thermal Analysis, Differential Scanning Calorimetry,Fourier Transform Infrared 1. The importance of selenium (Se) in human is well established, and its deficiency has caused serious diseases such as cancer and heart disease [1]. It is well established that all atoms are in motion, which contain significant amount of energy. 2. The selenium powder was purchased from Alpha Aesar, Hyderabad, India. 2.1. Further, the crystallite size (G) was calculated by using Scherrer formula: 2.2.

Related: