background preloader

Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole

Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole

Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole Triazoles are an important class of compounds used as core molecule for the synthesis of many pharmaceutical drugs. The objective of the present research was to investigate the influence of biofield treatment on physical, spectral and thermal properties of 1,2,4-triazole. The study was performed in two groups, control and treatment. The control group remained as untreated, and biofield treatment was given to treatment group. The control and treated 1,2,4-triazole were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermo Gravimetric analysis (TGA), Surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy. XRD analysis revealed a decrease in unit cell volume of treated 1,2,4-triazole (662.08 10-24 cm3) as compared to control sample (666.34 10-24 cm3).

Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole Triazoles are an important class of compounds used as core molecule for the synthesis of many pharmaceutical drugs. The objective of the present research was to investigate the influence of biofield treatment on physical, spectral and thermal properties of 1,2,4-triazole. The study was performed in two groups, control and treatment. The control group remained as untreated, and biofield treatment was given to treatment group. The control and treated 1,2,4-triazole were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermo Gravimetric analysis (TGA), Surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy. Keywords: Biofield, Biofield Treatment, Trivedi Efecct, Mahendra kumar Trivedi and Mahendra Trivedi.

"Characterization of Physical, Spectral and Thermal Properties of Biofi" by Mahendra Kumar Trivedi Description Triazoles are an important class of compounds used as core molecule for the synthesis of many pharmaceutical drugs. The objective of the present research was to investigate the influence of biofield treatment on physical, spectral and thermal properties of 1,2,4-triazole. The study was performed in two groups, control and treatment. The control group remained as untreated, and biofield treatment was given to treatment group. The control and treated 1,2,4-triazole were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermo Gravimetric analysis (TGA), Surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy. Citation Information Mahendra Kumar Trivedi.

Publication meta - Molecular Pharmaceutics & Organic Process Research Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole - Publications Triazoles are an important class of compounds used as core molecule for the synthesis of many pharmaceutical drugs. The objective of the present research was to investigate the influence of biofield treatment on physical, spectral and thermal properties of 1,2,4-triazole. The study was performed in two groups, control and treatment. The control group remained as untreated, and biofield treatment was given to treatment group. The control and treated 1,2,4-triazole were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermo Gravimetric analysis (TGA), Surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy. XRD analysis revealed a decrease in unit cell volume of treated 1,2,4-triazole (662.08 10-24 cm 3) as compared to control sample (666.34 10-24 cm 3).

Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole Triazoles are an important class of compounds used as core molecule for the synthesis of many pharmaceutical drugs. The objective of the present research was to investigate the influence of biofield treatment on physical, spectral and thermal properties of 1,2,4-triazole. The study was performed in two groups, control and treatment. The control group remained as untreated, and biofield treatment was given to treatment group. The control and treated 1,2,4-triazole were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermo Gravimetric analysis (TGA), Surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy. Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole Abstract Triazoles are an important class of compounds used as core molecule for the synthesis of many pharmaceutical drugs. The objective of the present research was to investigate the influence of biofield treatment on physical, spectral and thermal properties of 1,2,4-triazole.

Effect of Biofield Treatment on Boron Nitride Abstract Boron nitride (BN) is known for high hardness, thermal stability, thermal conductivity, and catalytic action. The aim of this study was to investigate the effect of biofield treatment on physical, structural and spectral properties of BN powder. Keywords: Biofield treatment; Boron nitride; X-ray diffraction; FT- IR; Surface area Introduction Boron nitride (BN) is a well-known ceramic material with fascinating properties, such as low density, high melting point, strength, corrosion resistance, and good chemical stability, excellent electrical and thermal properties. Nevertheless, the h-BN has similar crystal structure to graphite hence it is also known as white graphite [6,7]. Researchers have confirmed that biomagnetic fields are present around human body, which have been evidenced by electromyography (EMG), electrocardiography (ECG) and electroencephalogram (EEG) [18]. Mr. Experimental The BN powder was purchased from Sigma Aldrich, USA. X-ray diffraction study FT-IR spectroscopy

Bio-field Treatment: A Potential Strategy for Modification of Physical and Thermal Properties of Gluten Hydrolysate and Ipomoea Macroelements Share this: Embed* Cite this: Trivedi, Mahendra Kumar (2015): Bio-field Treatment: A Potential Strategy for Modification of Physical and Thermal Properties of Gluten Hydrolysate and Ipomoea Macroelements. figshare. Retrieved 09:31, Nov 18, 2015 (GMT) *The embed functionality can only be used for non commercial purposes. Description The objective of present study was to study the effect of biofield treatment on physical and thermal properties of gluten hydrolysate (GH) and ipomoea macroelements (IM). Comments (0) Published on 14 Oct 2015 - 12:53 (GMT) Filesize is 1.30 MB License (what's this?) Cite "Filename" Place your mouse over the citation text to select it Embed "Bio-field Treatment: A Potential Strategy for Modification of Physical and Thermal Properties of Gluten Hydrolysate and Ipomoea Macroelements" Show filename on top Place your mouse over the embed code to select and copy it

Mahendra Trivedi | Antimicrobial Susceptibility Pattern, Biochemical Characteristics and Biotyping of Salmonella paratyphi A: An Impact of Biofield Treatment responding into useful way that is called biofield energy and the process is known as biofield treatment. Mr. Trivedi’s unique biofield treatment is also known as The Trivedi Effect®. Trivedi’s biofield treatment has been known to transform the structural, physical and thermal properties of several metals in material science [14-16], improved the overall productivity of crops [17,18], altered characteristics features of microbes [19-21] and improved growth and anatomical characteristics of various medicinal plants [22,23]. Due to the clinical significance of this organism and literature reports on biofield treatment as an alternative approach, the present work was undertaken to evaluate the impact of biofield treatment on paratyphi A in relation to antimicrobials susceptibility, minimum inhibitory concentration (MIC) and biotyping based on various biochemical characters. Materials and Methods S. paratyphi A, American Type Culture Collection (ATCC 9150) and B. conditions until further use. Gr. biotyping.

Epernicus: Mahendra Kumar Trivedi, B. Tech. Research: Mahendra Kumar Trivedi earned his 5-year Bachelor’s degree in Mechanical Engineering in 1985 and worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered that he had the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. For the next 5-7 years, Trivedi applied this newfound discovery to helping people optimize their potential, and this unique phenomenon resulting from Mr.

Evaluation of Phenotyping and Genotyping Characteristic of Shigella sonnei after Biofield Treatment | Open Access | OMICS International Abstract Shigella sonnei (S. sonnei) is a non-motile, rod shape, clinically significant, Gram-negative bacterium. It is commonly associated with dysentery (shigellosis). Recently, resistance to third and fourth generation cephalosporins and fluoroquinolones has been reported in S. sonnei. Tables at a glance Figures at a glance Mahendra Trivedi | Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of Biofield Treatment Klebsiella oxytoca (K. oxytoca) is a Gram-negative microbe generally associated with community and hospitalacquired infections. Due to its clinical significance, we evaluated the effect of biofield treatment on phenotype and biotype characteristics of K. oxytoca (ATCC 43165). The study was performed into three groups i.e. C (control), T1 (treatment, revived); and T2 (treatment, lyophilized).

Mahendra Kumar Trivedi Mahendra Kumar Trivedi completed his 5-year Bachelor’s degree in Mechanical Engineering in 1985 and had worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered has the unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential. For the next 5-7 years, Trivedi applied this newfound discovery to helping people optimize their potential, and this unique phenomenon resulting from Mr. Trivedi’s biofield energy treatments became internationally renown as The Trivedi Effect®.

Mahendra Trivedi | Effect of Biofield Energy Treatment on Streptococcus group B: A Postpartum Pathogen | Dahryn Trivedi Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, et al. (2015) Effect of Bioeld Energy Treatment on Streptococcus Volume 7(5): 269-273 (2015) - 270J Microb Biochem Technol ISSN: 1948-5948 JMBT, an open access journal biofield treatment that is also called as Trivedi effect . S. agalactiae group B in relation to antimicrobials susceptibility and bio typing based on various biochemical characters. Materials and Methods group B, American Type Culture Collection (ATCC 12386) strains were procured from MicroBioLogics, Inc., USA, in two sets A and B. (Dade Behring Inc., West Sacramento, CA, USA) using Positive Breakpoint Combo 20 (PBPC 20) panel with respect to the control group. Experimental design Two ATCC samples A and B of gr. were grouped (Gr.). Biofield treatment strategy 󰀀e Gr. i.e. on day 5 and day 10, while Gr. Antimicrobial susceptibility test Investigation of antimicrobial susceptibility of was carried out with the help of automated instrument, MicroScan Walk-Away p viz.

Related: