background preloader

Physical, Thermal and Spectral Properties of Biofield Treated 3-Nitroacetophenone

Physical, Thermal and Spectral Properties of Biofield Treated 3-Nitroacetophenone

Physical, Thermal and Spectral Properties of Biofield Treated 3-Nitroacetophenone 3-Nitroacetophenone (3-NAP) is an organic compound used as an intermediate for the synthesis of pharmaceutical agents. The aim of this study was to evaluate the impact of biofield energy treatment on the physical, thermal and spectral properties of 3-NAP. The study was performed in two groups i.e. control and treated. The control group remained as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. Publication meta - Physical, Thermal and Spectral Properties of Biofield Treated 3-Nitroacetophenone - Publications 3-Nitroacetophenone (3-NAP) is an organic compound used as an intermediate for the synthesis of pharmaceutical agents. The aim of this study was to evaluate the impact of biofield energy treatment on the physical, thermal and spectral properties of 3-NAP. The study was performed in two groups i.e. control and treated.

An impact of Biofield Treatment on 3-Nitroacetophenone Compunds Description 3-Nitroacetophenone (3-NAP) is an organic compound used as an intermediate for the synthesis of pharmaceutical agents. The aim of this study was to evaluate the impact of biofield energy treatment on the physical, thermal and spectral properties of 3-NAP. Citation Information Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Rakesh Kumar Mishra, Snehasis Jana. Physical, Thermal and Spectral Properties of Biofield Treated 3-Nitroacetophenone Title: Physical, Thermal and Spectral Properties of Biofield Treated 3-Nitroacetophenone Publication: Science Journal of Analytical Chemistry Select license: Creative Commons Attributions-NonCommercial-ShareAlike 10.11648/j.sjac.20150306.11 Updated: November 21st, 2016 Abstract: 3-Nitroacetophenone (3-NAP) is an organic compound used as an intermediate for the synthesis of pharmaceutical agents.

Physical, Thermal and Spectroscopic Studies of Biofield Treated <i>p</i>-Chlorobenzonitrile Physical, Thermal and Spectroscopic Studies of Biofield Treated p-Chlorobenzonitrile Science Journal of Chemistry Volume 3, Issue 6, December 2015, Pages: 84-90 Received: Sep. 19, 2015; Accepted: Sep. 30, 2015; Published: Oct. 16, 2015 DOI: 10.11648/j.sjc.20150306.11 Views 557 Downloads 25 Authors Mahendra Kumar Trivedi, Trivedi Global Inc., Henderson, USA Alice Branton, Trivedi Global Inc., Henderson, USA Dahryn Trivedi, Trivedi Global Inc., Henderson, USA Gopal Nayak, Trivedi Global Inc., Henderson, USA Ragini Singh, Trivedi Science Research Laboratory Pvt. Snehasis Jana, Trivedi Science Research Laboratory Pvt. Abstract Para-chlorobenzonitrile (p-CBN) is widely used as a chemical intermediate in the manufacturing of dyes, medicines, and pesticides, however; sometimes it may cause runaway reactions at high temperatures. Biofield Energy Treatment, Para-Chlorobenzonitrile, X-ray Diffraction Study, Surface Area Analyzer, Differential Scanning Calorimetry, Thermogravimetric Analysis

Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Methyl-2-Naphthyl Ether o u r n a l f v i m e t y c h s Environmental Analytical Chemistry Trivedi et al., J Environ Anal Chem 2015, 2:5 Research Article Open Access Volume 2 • Issue 5 • 1000162 J Environ Anal Chem ISSN: 2380-2391 JREAC, an open access journal Keywords: Methyl-2-naphthyl ether; Bioeld energy; X-ray diraction; Surface area analysis; Dierential scanning calorimetry; ermogravimetric analysis Abbreviations MNE: Methyl-2-Naphthyl Ether; NCCAM: National Center For Complementary And Alternative Medicine; XRD: X-Ray Diraction; DSC: Dierential Scanning Calorimetry; TGA: ermogravimetric Analysis; DTA: Dierential ermal Analysis; DTG: Derivative ermogravimetry; FT-IR: Fourier Transforms Infrared Introduction Naphthalene has been described as new class of potent antimicrobials against wide range of human pathogens. central place among biologically active compounds owing to its varied and exciting antibiotic properties with less toxicity [1]. microbial infections [2,3]. [4,5]. gland.

Physical, Thermal and Spectral Properties of Biofield Energy Treated 2,4-Dihydroxybenzophenone Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Physical, Thermal and Spectral Properties of Bioeld Energy Treated 2,4-Dihydroxybenzophenone. Clin Pharmacol Biopharm 4: 145. doi:10.4172/2167-065X.1000145 Page 8 of 8 Volume 4 • Issue 4 • 1000145 Clin Pharmacol Biopharm ISSN: 2167-065X CPB, an open access journal Acknowledgement e authors would like to thank all the laboratory sta of MGV Pharmacy College, Nashik for their assistance during the various instrument characterizations. Trivedi Science, Trivedi Master Wellness and Trivedi Testimonials for their support during the work. References 1. Company Hillsborough, NJ, USA. 2. temperature solution growth and its characterization. 3. 4. degradation and stability indicating studies of drugs- A review. 5. physical and thermal characteristics of silicon, tin and lead powders. Sci Eng 2: 125. 6. the physical and thermal characteristics of aluminium powders. 7. Sci Eng S11: 001. 8. infusion powder. 9. 10. 11. 12. 13.

Biofield | Antimicrobial Sensitivity Pattern of Citrobacter braakii Research Article Open Access Trivedi et al., J Clin Med Genom 2015, 3:1 Volume 3 • Issue 1 • 1000129 J Clin Med Genom ISSN: IJGM, an open access journal Journal of Clinical & Medical Genomics Keywords: Citrobacter braakii; Antimicrobial susceptibility; Bioeld treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gram- negative bacteria; Enterobacteriaceae Abbreviations: MDR: Multi-Drug Resistant; ATCC: American Type Culture Collection; NBPC 30: Negative Breakpoint Combo 30; MIC: Minimum Inhibitory Concentration; OTUs: Operational Taxonomic Units; NCBI: National Center for Biotechnology Information; MEGA: Molecular Evolutionary Genetics Analysis; PCR: Polymerase Chain Reaction; RDP: Ribosomal Database Project; HBMEC: Human Brain Microvascular Endothelial Cells Introduction Citrobacter braakii (C. braakii) is a genus of Gram-negative, straight, facultative anaerobic and motile bacilli bacterium widely distributed in water, soil, and food in the environment.

Physical, Thermal and Spectral Properties of Biofield Treated 1,2,3-Trimethoxybenzene Abstract Study background: 1,2,3-Trimethoxybenzene is an important compound used for the synthesis of chemicals and pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of 1,2,3-trimethoxybenzene. Tables at a glance Figures at a glance

Related: