background preloader

16s rDNA Analysis of Citrobacter Braakii

16s rDNA Analysis of Citrobacter Braakii
Research ArticleOpen Access Volume 3 • Issue 1 • 1000129 J Clin Med Genom ISSN: IJGM, an open access journal Journal of Clinical & Medical Genomics Keywords: Citrobacter braakii Antimicrobial susceptibility; Biofield treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gram-negative bacteria; Enterobacteriaceae Abbreviations: MDR: Multi-Drug Resistant; ATCC: American Type Culture Collection; NBPC 30: Negative Breakpoint Combo 30; MIC: Minimum Inhibitory Concentration; OTUs: Operational Taxonomic Units; NCBI: National Center for Biotechnology Information; MEGA: Molecular Evolutionary Genetics Analysis; PCR: Polymerase Chain Reaction; RDP: Ribosomal Database Project; HBMEC: Human Brain Microvascular Endothelial Cells Introduction C. braakii ) is a genus of Gram-negative, straight, facultative anaerobic and motile bacilli bacterium widely distributed in water, soil, and food in the environment. Enterobacteriaceae family. Citrobacter spp. [8]. [11,12]. strain. [13-15]. *Corresponding author: Dr. i.e ).

http://www.academia.edu/17261229/Phenotyping_and_16S_rDNA_Analysis_after_Biofield_Treatment_on_Citrobacter_braakii_A_Urinary_Pathogen

Phenotyping Analysis of Citrobacter Braakii after Biofield Treatment Description Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr.

Study of Biochemical Characteristics of Citrobacter Braakii Research Article Open Access Trivedi et al., J Clin Med Genom 2015, 3:1 Volume 3 • Issue 1 • 1000129 Thermal & Spectroscopic Properties of Benzophenone The aim of the present study was to evaluate the impact of biofield energy treatment on the thermal, spectroscopic, and chemical properties of benzophenone. The study was done using various analytical methods such as gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. The benzophenone sample was divided into two parts, one part was subjected to Mr.

16s rDNA Sequencing of Human Energy Treated C. Braakii Title: Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Publication: Citrobacter Braakii – Study of Biochemical Characteristics Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. GC-MS Analysis of Benzophenone Description The aim of the present study was to evaluate the impact of biofield energy treatment on the thermal, spectroscopic, and chemical properties of benzophenone. The study was done using various analytical methods such as gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. The benzophenone sample was divided into two parts, one part was subjected to Mr. Trivedi’s biofield energy treatment, called as treated and the other part was remained as untreated, called as control. Mass spectra showed the molecular ion peak at m/z = 182 in control and all the treated benzophenone samples with different intensities (treated samples further divided in to three parts, T1, T2, and T3 for GC-MS study).

Antimicrobial Susceptibility Testing of Burkholderia Cepacia Abstract Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. Burkholderia Cepacia Antimicrobial Susceptibility Testing An Effect of Biofield Treatment on Multidrug-resistant Burkholderia cepacia: A Multihost Pathogen Mahendra Kumar Trivedi

Related: