background preloader

FT-IR Spectroscopic Characterization of MoO2

FT-IR Spectroscopic Characterization of MoO2

Physical and Thermal Properties of Molybdenum Dioxide Description Antimony tin oxide (ATO) is known for its high thermal conductivity, optical transmittance, and wide energy band gap, which makes it a promising material for the display devices, solar cells, and chemical sensor industries. The present study was undertaken to evaluate the effect of biofield energy treatment on the atomic and physical properties of ATO nanopowder. The ATO nanopowder was divided into two parts: control and treated. The treated part was subjected to Mr. Trivedi’s biofield energy treatment. Citation Information Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal, Snehasis Jana.

Physical and Thermal Properties of Molybdenum Dioxide Abstract Molybdenum dioxide (MoO2) is known for its catalytic activity toward reforming hydrocarbons. The objective of this study was to evaluate the effect of biofield energy treatment on physical, thermal, and structural properties in MoO2. Citation Information Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal, Snehasis Jana.

Properties of Biofield Treated Molybdenum Analysis of Physical, Thermal, and Structural Properties of Biofield Energy Treated Molybdenum Dioxide Mahendra Kumar Trivedi1, Rama Mohan Tallapragada1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Omprakash Latiyal2, Snehasis Jana2, * 1Trivedi Global Inc., Henderson, USA 2Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India Email address: (S. To cite this article: Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal,Snehasis Jana. Abstract: Molybdenum dioxide (MoO2) is known for its catalytic activity toward reforming hydrocarbons. Keywords: Molybdenum Dioxide, Biofield Energy Treatment, X-ray Diffraction, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy 1. Molybdenum is a well-known element, around 80% is utilized in steel industries to improve the corrosion resistance [1]. 2. The MoO2 powder was purchased from Sigma Aldrich, USA. 2.1. D = kλ/(bCosθ) 2.2. 2.3. 3. 3.1. Fig. 1. Table 1. 4.

MoO2' Energy Healing Treatment Abstract Molybdenum dioxide (MoO2) is known for its catalytic activity toward reforming hydrocarbons. The objective of this study was to evaluate the effect of biofield energy treatment on physical, thermal, and structural properties in MoO2. Keywords: Molybdenum Dioxide, Biofield Energy Treatment, X-ray Diffraction, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy 1. Molybdenum is a well-known element, around 80% is utilized in steel industries to improve the corrosion resistance [1]. The energy exists in various forms and there are several ways to transfer the energy from one place to another such as electrochemical, electrical and thermal etc. 2. The MoO2 powder was purchased from Sigma Aldrich, USA. 2.1. The XRD analysis of control and treated MoO2 samples was accomplished on Phillips, Holland PW 1710 X-ray diffractometer system. D = kλ/(bCosθ) Here, b is full width half maximum (FWHM) of XRD peaks, k=0.94, and λ =1.54056 Å. 2.2. 2.3. 3. 3.1. Table 1. Fig. 1. 3.2.

MoO2' Energy Healing Treatment Abstract Molybdenum dioxide (MoO2) is known for its catalytic activity toward reforming hydrocarbons. The objective of this study was to evaluate the effect of biofield energy treatment on physical, thermal, and structural properties in MoO2. The MoO2 powder sample was divided into two parts, one part was remained as untreated, called as control, while the other part was subjected to Mr. Trivedi’s biofield energy treatment and called as treated. Both control and treated samples were investigated using X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. Keywords: Molybdenum Dioxide, Biofield Energy Treatment, X-ray Diffraction, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy 1. Molybdenum is a well-known element, around 80% is utilized in steel industries to improve the corrosion resistance [1]. 2. The MoO2 powder was purchased from Sigma Aldrich, USA. 2.1. D = kλ/(bCosθ) 2.2. 2.3. 3. 3.1. Table 1. Fig. 1. 4.

Biofield Evaluation | Molybdenum Dioxide 0WordPress0CiteULike0 11 Molybdenum dioxide (MoO2) is known for its catalytic activity toward reforming hydrocarbons. The objective ofthis study was to evaluate the effect of biofield energy treatment on physical, thermal, and structural properties in MoO2. Your session has expired but don’t worry, your message has been saved.Please log in and we’ll bring you back to this page. Your evaluation is of great value to our authors and readers. Review When you're done, click "publish" Only blue fields are mandatory. Your mailing list is currently empty.It will build up as you send messagesand links to your peers. No one besides you has access to this list. Enter the e-mail addresses of your recipients in the box below. Your message has been sent. Description Title : Analysis of Physical, Thermal, and Structural Properties of Biofield Energy Treated Molybdenum DioxideAuthor(s) : Mahendra Kumar Trivedi Subject : materials scienceArea : Open AccessLanguage : EnglishYear : 2015 Leave a comment Your comment

Study of Bismuth Oxide Powder Evaluation of Atomic, Physical, and Thermal Properties of Bismuth Oxide Powder: An Impact of Biofield Energy Treatment Mahendra Kumar Trivedi1, Rama Mohan Tallapragada1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Omprakash Latiyal2, Snehasis Jana2, * 1Trivedi Global Inc., Henderson, USA 2Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India Email address: (S. To cite this article: Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal, Snehasis Jana. Abstract: Bismuth oxide (Bi2O3) is known for its application in several industries such as solid oxide fuel cells, optoelectronics, gas sensors and optical coatings. Keywords: Bismuth Oxide, Biofield Energy Treatment, X-ray Diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy 1. 2. The Bi2O3 powder was procured from Sigma Aldrich, USA. 2.1. D = kλ/(bCosθ) % change in crystallite size = [(Dt-Dc)/Dc] ×100

Evaluation of Antimicrobial Susceptibility Assay | S. Boydii 0WordPress0CiteULike0 1 Bacillary dysentery and acute gastroenteritis caused by infection of Shigella species are major public healthburden in India and its neighboring countries. Emergence of antimicrobial resistance threatens to render current treatmentsineffective. Your session has expired but don’t worry, your message has been saved.Please log in and we’ll bring you back to this page. Your evaluation is of great value to our authors and readers. Review When you're done, click "publish" Only blue fields are mandatory. Your mailing list is currently empty.It will build up as you send messagesand links to your peers. No one besides you has access to this list. Enter the e-mail addresses of your recipients in the box below. Your message has been sent. Description Title : Antibiogram of Biofield-Treated Shigella boydii: Global Burden of InfectionsAuthor(s) : Mahendra Kumar Trivedi Subject : microbiologyArea : Open AccessLanguage : EnglishYear : 2015 Leave a comment Your comment

Evaluation of Physicochemical Properties of Bi2O3 Description Bismuth oxide (Bi2O3) is known for its application in several industries such as solid oxide fuel cells, optoelectronics, gas sensors and optical coatings. The present study was designed to evaluate the effect of biofield energy treatment on the atomic, physical, and thermal properties of Bi2O3. The Bi2O3 powder was equally divided into two parts: control and treated. The treated part was subjected to biofield energy treatment. Citation Information Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak, Omprakash Latiyal, Snehasis Jana.

Related: