background preloader

Klebsiella Pneumoniae Biochemical Characteristics Assessment

Klebsiella Pneumoniae Biochemical Characteristics Assessment

Klebsiella Pneumoniae Characteristics | Effects of External Energy Description Klebsiella pneumoniae (K. pneumoniae) is a common nosocomial pathogen causing respiratory tract (pneumoniae) and blood stream infections. Multidrug-resistant (MDR) isolates of K. pneumoniae infections are difficult to treat in patients in health care settings. Citation Information Mahendra Kumar Trivedi. Klebsiella Pneumoniae Biochemical Analysis 0WordPress0CiteULike0 6 Klebsiella pneumoniae (K. pneumoniae) is a common nosocomial pathogen causing respiratory tract (pneumoniae)and blood stream infections. Multidrug-resistant (MDR) isolates of K. pneumoniae infections are difficult to treat inpatients in health care settings. Aim of the present study was to determine the impact of Mr. Trivedi’s biofield treatmenton four MDR clinical lab isolates (LS) of K. pneumoniae (LS 2, LS 6, LS 7, and LS 14). Your session has expired but don’t worry, your message has been saved.Please log in and we’ll bring you back to this page. Your evaluation is of great value to our authors and readers. Review When you're done, click "publish" Only blue fields are mandatory. Your mailing list is currently empty.It will build up as you send messagesand links to your peers. No one besides you has access to this list. Enter the e-mail addresses of your recipients in the box below. Your message has been sent. Description Leave a comment Your comment

Biofield Impact on Klebsiella Pneumoniae Characteristics Citation: Trivedi MK, Branton A, Trivedi D, Shettigar H, Gangwar M, et al. (2015) Antibiogram Typing and Biochemical Characterization of Klebsiella Pneumonia after Bioeld Treatment. J Trop Dis 3: 173. doi:10.4173/2329891X.1000173 Page 2 of 6 Volume 3 • Issue 4 • 1000173 J Trop Dis ISSN: 2329-891X JTD, an open access journal the bioeld treatment has considerably altered the susceptibility of antimicrobials and biotype of microbes [18-20]. above mentioned facts and literature reports on bioeld treatment, the present work was undertaken to evaluate the impact of bioeld treatment on antimicrobials susceptibility, biochemical reactions pattern, and biotype of MDR isolates of K. pneumoniae. Materials and Methods Experimental design and bacterial isolates MDR clinical lab isolates (i.e. pneumoniae were obtained from stored stock cultures in Microbiology Lab, Hinduja Hospital, Mumbai. into two groups i.e. control and treatment. identication media and antimicrobial agents were checked prior to the [22].

Characteristics of Klebsiella Pneumoniae: Impact of Biofield Title: Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae after Biofield Treatment Publication: Journal of Tropical Diseases Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 19th, 2016 Abstract: Klebsiella pneumoniae (K. pneumoniae) is a common nosocomial pathogen causing respiratory tract (pneumoniae) and blood stream infections.

FT-IR Analysis of Biofield Treated Tetracycline Description Objective: Chloramphenicol and tetracycline are broad-spectrum antibiotics and widely used against variety of microbial infections. Nowadays, several microbes have acquired resistance to chloramphenicol and tetracycline. Citation Information Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana s, et al. (2015) Spectroscopic Characterization of Chloramphenicol and Tetracycline: an Impact of Biofield .

Evaluation of Physical Properties of Selenium 224 Mahendra Kumar Trivedi et al.: Evaluation of Biofield Energy Treatment on Physical and Thermal Characteristics of Selenium Powder modify the phys ical and the rmal properties of sele nium powder. It is well established that all atoms ar e in moti on, which contain signifi cant amount of energ y. the for m of translatio nal, ro tation o r vibra tional, which is evident from vibration al spectroscopy. human body cons ist of various vibratory par ticles including electron, proton, ions etc. particles, electromagne tic radiation emitted a nd that form an electromagnetic field around the bod y, known as biofield [7]. Thus, a human has the ability to harness the energy from the environment/universe and can tra nsmit it to any object (living or non-livin g) around the Globe. always receive the energy and responded it into useful way that is called biofield energy. termed as biofiel d treatment. Complementary and Alternative Medicine (NCCAM) considered this biofie ld treatment (therapy) in subcategory

Human Energy Impact on Structural Properties of Brass Powder Volume 4 • Issue 1 • 1000134 J Powder Metall Min ISSN: 2168-9806 JPMM, an open access journal Research Article Open Access Trivedi et al., J Powder Metall Min 2015, 4:1 Powder Metallurgy & Mining Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatment Trivedi MK2, Nayak G2, Patil S2, Tallapragada RM2, Latiyal O1 and Jana S1* 1Trivedi Science Research Laboratory Pvt. 2Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA *Corresponding author: Jana S, Trivedi Science Research Laboratory Pvt. Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Road, Bhopal-462026, Madhya Pradesh, India, Tel: +91-755-6660006; E-mail: publication@trivedisrl.com Received June 29, 2015; Accepted July 14, 2015; Published July 27, 2015 Citation: Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O, et al. (2015) Characterization of Physical and Structural Properties of Brass Powder After Bio- Introduction

Brass Powder Energy Healing Therapy & X-Ray Diffraction Analysis Description Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Control and treated brass powder were characterized using particle size analyser, X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Citation Information Mahendra Kumar Trivedi.

Human Energy Treatment of Brass Powder & X-Ray Diffraction Analysis 0WordPress0CiteULike0 New Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Your session has expired but don’t worry, your message has been saved.Please log in and we’ll bring you back to this page. Your evaluation is of great value to our authors and readers. Review When you're done, click "publish" Only blue fields are mandatory. Your mailing list is currently empty.It will build up as you send messagesand links to your peers. No one besides you has access to this list. Enter the e-mail addresses of your recipients in the box below. Your message has been sent. Description Leave a comment Your comment

Characterization of Physical and Structural Properties of Brass Powder Title: Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatment Publication: Powder Metallurgy & Mining Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 19th, 2016 Abstract: Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio.

Related: