background preloader

2,4 Dihydroxybenzophenone TGA Analysis

2,4 Dihydroxybenzophenone TGA Analysis
Research ArticleOpen Access Clinical Pharmacology & Biopharmaceutics l i n c a h r m o g y p e u t s Trivedi et al., Clin Pharmacol Biopharm 2015, 4: Volume 4 • Issue 4 • 1000145 Clin Pharmacol Biopharm ISSN: 2167-065X CPB, an open access journal Physical, Thermal and Spectral Properties of Biofield Energy Treated 2,4-Dihydroxybenzophenone Mahendra Kumar Trivedi , Rama Mohan Tallapragada , Alice Branton , Dahryn Trivedi , Gopal Nayak , Rakesh Kumar Mishra and Snehasis Jana Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA Trivedi Science Research Laboratory Pvt. Abstract Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. physical, thermal and spectral properties of DHBP. control group remained as untreated, and the treated group received Mr. Methods: Results: The XRD study indicated a slight decrease in the volume of the unit cell and molecular weight of treated DHBP as compared to the control sample. max º C). and d Dr.

http://www.academia.edu/17644531/Physical_Thermal_and_Spectral_Properties_of_Biofield_Energy_Treated_2_4-Dihydroxybenzophenone

Human Energy Impact on Thermal Properties of DHBP Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Physical, Thermal and Spectral Properties of Bioeld Energy Treated 2,4-Dihydroxybenzophenone. Clin Pharmacol Biopharm 4: 145. doi:10.4172/2167-065X.1000145 Page 8 of 8 Volume 4 • Issue 4 • 1000145 Clin Pharmacol Biopharm Thermal Properties of DHBP after the Human Energy Treatment Description Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of DHBP. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment.

Antibiogram Genotype & Phylogenetic Analysis of Biofield Treated Nocardia otitidis Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, et al. (2015) Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Bioeld Treated Nocardia otitidis. Biol Syst Open Access 4: 143. doi:10.4172/2329-6577.1000143 Biofield Treatment on Silicon Carbide Abstract Silicon carbide (SiC) is a well-known ceramic due to its excellent spectral absorbance and thermo-mechanical properties. The wide band gap, high melting point and thermal conductivity of SiC is used in high temperature applications. The present study was undertaken to investigate the effect of biofield treatment on physical, atomic, and structural characteristics of SiC powder. TGA Analysis of Biofield Treated 2,4-Dihydroxybenzophenone Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of DHBP. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr.

Menthol TGA Analysis - Evaluation of Energy Medicine Description Thymol and menthol are naturally occurring plant derived compounds, which have excellent pharmaceutical and antimicrobial applications. The aim of this work was to evaluate the impact of biofield energy on physical and structural characteristics of thymol and menthol. The control and biofield treated compounds (thymol and menthol) were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA), and Fourier Transform Infrared Spectroscopy (FT-IR).

View an Impact of Mahendra Trivedi Biofield Energy on Nocardia Otitidis Abstract Nocardiosis is a soil-borne aerobic infection caused by Nocardia species commonly affects the respiratory tract. Nocardia otitidis (N. otitidis) is the key organism for non-mycobacterial tuberculosis. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield energy treatment on N. otitidis and analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), DNA polymorphism by Random Amplified Polymorphic DNA (RAPD) and 16S rDNA sequencing. Effect of Biofield Treatment on Boron Nitride Abstract Boron nitride (BN) is known for high hardness, thermal stability, thermal conductivity, and catalytic action. The aim of this study was to investigate the effect of biofield treatment on physical, structural and spectral properties of BN powder. The control and treated sample of BN powder were characterized by X-ray diffraction (XRD), surface area analysis and Fourier transform infrared spectroscopy (FT-IR).

Impact of Biofield on Thermal Stability of Thymol 0WordPress0CiteULike0 New Thymol and menthol are naturally occurring plant derived compounds, which have excellent pharmaceutical and antimicrobial applications. The aim of this work was to evaluate the impact of biofield energy on physical and structural characteristics of thymol and menthol. Menthol TGA Analysis- Study of Biofield Impact Title: Structural and Physical Properties of Biofield Treated Thymol and Menthol Publication: Molecular Pharmaceutics & Organic Process Research Select license: Modification of Gluten Hydrolysate & Ipomoea Macroelements Properties Title: Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment Publication: Analytical & Bioanalytical J Techniques Select license: Creative Commons Attributions-NonCommercial-ShareAlike

Related: