background preloader

Xoscillo - A software oscilloscope that acquires data using an arduino or a parallax (more platforms to come).

Xoscillo - A software oscilloscope that acquires data using an arduino or a parallax (more platforms to come).
About This is a multiplatform software oscilloscope and logical analyzer. It supports arduino(with custom firmware) and a Parallax USB oscilloscope. More platforms to come. Features Panoramic view Load and save waveforms Zoom in and out Can open several waveforms at the same time Can run several oscilloscopes/logical analyzers simultaneously Frequency analysis using FFT Filtering, so far it has a low pass filter, probably more to come. Supported platforms Support Ask here in our forum Screenshots Basic screen shot showing the oscilloscope displaying a simple waveform Logic analyzer screenshot Displays the FFT of the signal and underneath the FFT over time. This screen shot shows an arduino based oscilloscope and a parallax one working simultaneously in realtime. Linux Notes from the Author The code is not by any means great, its just a quick exercise I did to learn c#. License

The RRRRRRRRRRBBA, a $3 Arduino 2. The Arduino is NOT a microcontroller! Of course, the Arduino is not a microcontroller, but rather a development environment for microcontrollers -- including a programmer board, a software program for the computer, and a programming language, in addition to the microcontroller chip itself. A programming/debugging solution the Arduino is extremely easy and friendly to use, and the level of support you get with it is well worth the money. Could that possibly mean that.... (read on)

HMC5883L Compass Tutorial with Arduino Library - Tutorials - Love Electronics Using a magnetometer can be a little tricky, especially if your unsure about the formulas to use to get the correct bearing and when other magnetic objects are interfering with your signal. We've created a library for our HMC5883L Breakout Board , which will also be compatible with other HMC5883L breakout boards made by other manufacturers. Join us whilst we cover the following: Understand what is a magnetometer and how they work. How do compasses work? Firstly an introduction, a (standard handheld) compass works by aligning itself to the earths magnetic field. Our magnetometer uses these magnetic fields, however it doesn't pull on a little needle inside it! How do we use one? Okay, so now we know how to use one, the first step is to get some data out of our compass. Now of course to talk to the HMC5883L we will need some code, helpfully we've written an arduino library for the HMC5883L which makes this really easy. Using the HMC5883L Arduino Library Wire.begin(); Calculate your bearing

Arduino and TFT LCD Learn how to use an inexpensive TFT colour touch LCD shield with your Arduino. This is chapter twenty-nine of our huge Arduino tutorial series. Updated 07/02/2014 There are many colour LCDs on the market that can be used with an Arduino, and in this tutorial we’ll explain how to use a model that is easy to use, has a touch screen, doesn’t waste all your digital output pins – and won’t break the bank. And upside down: As you can imagine, it completely covers an Arduino Uno or compatible board, and offers a neat way to create a large display or user-interface. And unlike other colour LCDs, this one doesn’t eat up all your digital output pins – it uses the SPI bus for the display (D10~D13), and four analogue pins (A0~A3) if you use the touch sensor. With some imagination, existing Arduino knowledge and the explanation within you’ll be creating all sorts of displays and interfaces in a short period of time. Getting started Using the LCD Moving on, let’s start with using the display. Conclusion

Improving the Beginner’s PID – Introduction « Project Blog In conjunction with the release of the new Arduino PID Library I’ve decided to release this series of posts. The last library, while solid, didn’t really come with any code explanation. This time around the plan is to explain in great detail why the code is the way it is. I’m hoping this will be of use to two groups of people: People directly interested in what’s going on inside the Arduino PID library will get a detailed explanation. It’s going to be a tough slog, but I think I found a not-too-painful way to explain my code. The Beginner’s PID Here’s the PID equation as everyone first learns it: This leads pretty much everyone to write the following PID controller: Compute() is called either regularly or irregularly, and it works pretty well. Sample Time – The PID algorithm functions best if it is evaluated at a regular interval. Once we’ve addressed all these issues, we’ll have a solid PID algorithm. UPDATE: In all the code examples I’m using doubles. Tags: Arduino, Beginner's PID, PID

Femtoduino: an ultrasmall (20.7x15.2 mm) libre Arduino compatible board Femtoduino is an ultrasmall (20.7x15.2 mm) libre Arduino compatible board. By using the QFN32 version of the ATMEGA 328p, 0.05" connectors, 0402 components and removing everything not strictly necessary, I've been able to design and hand build an Arduino compatible board which is very small (20.7x15.2 mm) and ultra light (2g) but has exactly the same computing power of the Arduino Duemilanove or UNO. Femtoduino has been developed for ultrasmall Arduino prototyping. I had the need to add "Arduino intelligence" to quite small objects (balls, cubes, mices, etc) so I needed to shrink down the size of Arduino as much as possible. Femtoduino is the result. For regular prototyping, Femtoduino comes with a handy breakout board which breaks out Femtoduino's 0.05" connectors into regular 0.1" pins so that you can use it on standard breadboards or perfboards. Femtoduino is a true libre hardware project. Video presentation of Femtoduino Femtoduino Sources and Schematics Please support the project!

We interrupt this program to bring you an Arduino interrupt tutorial Ah yes… the wonderful and oft-misunderstood world of microcontroller interrupts. Are you looking to build a project that relies on very precise timing or needs to react quickly to an input? Then don’t change that channel, my friend. In this tutorial we’ll cover what interrupts are, what they do, and how to use them. What is an interrupt? On a very basic level, an interrupt is an signal that interrupts the current processor activity. ISR? If you’re new to the world of software development, you might wonder why all this complication is necessary just to respond to external events. You certainly can do all of these things in your main code, but interrupts give you a key advantage – they are asynchronous. Let’s use a real-world example. Instead, imagine if the package was sent Fedex or UPS with delivery confirmation. The AVR chips used in most Arduinos are not capable of parallel processing, i.e. they can’t do multiple things at once. Types of Interrupts Implementing an interrupt in a program

Arduino and GSM Cellular – Part Two Connect your Arduino Uno or compatible to the cellular network with the SM5100 GSM module shield. This is chapter twenty-six of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – A tutorial on the Arduino universe. If you are looking for tutorials using the SIMCOM SIM900 GSM module, click here, and here if you have an Arduino Mega. Updated 15/01/2014 Introduction The purpose of this tutorial is to have your Arduino to communicate over a GSM mobile telephone network using the SM5100B GSM Cellular Shield: My goal is to illustrate various methods of interaction between an Arduino and the GSM cellular network using the SM5100B GSM shield from Sparkfun, with which you can then use your existing knowledge to build upon those methods. Stop! It is assumed that you have a solid understanding of how to program your Arduino. Getting started As mentioned previously, we’re using the Sparkfun GSM shield with the SM5100B module. Ignore this at your own risk

Welcome Arduino and monochrome LCDs Please note that the tutorials are not currently compatible with Arduino IDE v1.0. Please continue to use v22 or v23 until further notice. This is chapter twenty-four of a series originally titled “Getting Started/Moving Forward with Arduino!” The first chapter is here, the complete series is detailed here. Welcome back fellow arduidans! The purpose of this article is to summarise a range of affordable monochrome liquid-crystal display units that are available to work with our Arduino; and to replace the section about LCDs in chapter two of this series. Fixed-character LCD modules When shopping around for LCD modules, these will usually be the the most common found in retail outlets. Currently, most LCDs should have a backlight of some sort, however you may come across some heavily-discounted models on (for example) eBay that are not. Interfacing these screens with our Arduino boards is very easy, and there are several ways to do so. Four-bit parallel interface … or two rows of eight:

GamePack Were you ever the kind of person to hack up your own Playstation controllers and hook it up to something else? Well, those shards of plastic can be mighty dangerous, so I’ve done it for you. And hey, with the GamePack you’ll even have something you can hook it up to. The GamePack comes with an Arduino, MeCap Backpack, TouchShield Stealth or Slide, ExtenderShield and an InputShield- everything you need to create your own open source, portable gaming device. Want to create a whole new gaming platform? Why not? I’ve just added a new option for wide screen that includes the new TouchShield Slide. Components Specifications TouchShield Slide: 320×240 LCD Screen Resistive Touch Screen Holds 60 128×128 bitmap images Compatible with Arduino Environment Only Uses Arduino Pins: 3 and 4 Graphics Library Ready to Go Draw Shapes, Pixels, Colors, Graphs, Buttons 2.83 inch diagonal Tutorials/Blogs Reference and Firmware Media Another shot of the Open Source Gameboy Project

Arduino turns off idle Amplifier What is this? NovaIdle is monitoring amplifier for idle time (no music played) and turns off the amplifier with IR command It is written and tuned for the Peachtree Nova amplifier that has a tube. I wrote this program as I tend to forget the amplifier on and given the tube has limited ifetime, I am always feeling bad when I see it still on few hours later. What You need to build this? Optional Components: 1x Blue LED 1x Yellow LED 1x Green LED 3x 330 Ohm Resistor (anything from 220 to 330 will do) 1x Prototype board to solder and connect the above 1x 3.5mm Earphone Stereo Jack 1x RCA to 3.5mm Stereo cable 1x USB Power supply (or you can feed it from other source) How it works: The program is written for Arduino, basically reading left and right signals on Analog inputs (A0 and A1) from a line level out of the Nova (connector 16 on the Peachtree user manual diagram). The Blue LED will light up if the unit will detect the amplifier is on. The IR LED needs to be 950 nMeter LED.

Related: