background preloader

Human Energy Impact on Thermal Properties of DHBP

Human Energy Impact on Thermal Properties of DHBP
Citation: Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Physical, Thermal and Spectral Properties of Bioeld Energy Treated 2,4-Dihydroxybenzophenone. Clin Pharmacol Biopharm 4: 145. doi:10.4172/2167-065X.1000145 Page 8 of 8 Volume 4 • Issue 4 • 1000145 Clin Pharmacol Biopharm ISSN: 2167-065X CPB, an open access journal Acknowledgement e authors would like to thank all the laboratory sta of MGV Pharmacy College, Nashik for their assistance during the various instrument characterizations. Trivedi Science, Trivedi Master Wellness and Trivedi Testimonials for their support during the work. References 1. Company Hillsborough, NJ, USA. 2. temperature solution growth and its characterization. 3. 4. degradation and stability indicating studies of drugs- A review. 5. physical and thermal characteristics of silicon, tin and lead powders. Sci Eng 2: 125. 6. the physical and thermal characteristics of aluminium powders. 7. Sci Eng S11: 001. 8. infusion powder. 9. 10. 11. 12. 13.

https://www.researchgate.net/publication/283450293_Physical_Thermal_and_Spectral_Properties_of_Biofield_Energy_Treated_24-Dihydroxybenzophenone

Related:  Mahendra Trivedi's PublicationsSpiritual HealingHuman Energy TreatmentprathmeshtiwariScientific-Research

2,4-Dihydroxybenzophenone Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of DHBP. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr.

16S rDNA Analysis of Morganella Morganii Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, et al. (2015) Antibiogram and Genotypic Analysis using 16S rDNA after Bioeld Treatment on Morganella morganii. Adv Tech Biol Med 3: 137. doi: 10.4172/2379-1764.1000137 Page 2 of 8 Alteration in Characteristics of CFA Trivedi et al., J Thermodyn Catal 2015, 6:3 Research article Open Access Thermodynamics & Catalysis o u r 2,4 Dihydroxybenzophenone TGA Analysis Research ArticleOpen Access Clinical Pharmacology & Biopharmaceutics l i 2,4-Dihydroxybenzophenone Description Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of DHBP.

TGA Analysis of Biofield Treated 2,4-Dihydroxybenzophenone Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of DHBP. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. Impact of Human Energy Treatment on M. Morganii Morganella morganii (M. morganii) is one of the important nosocomial pathogen associated with the urinary tract infections and bacteremia. The aim of this study was to evaluate the effect of Mr. Trivedi’s biofield energy treatment on M. morganii in the lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, biotype number and genotype. M. morganii cells were procured from MicroBioLogics Inc., USA in sealed packs bearing the American Type Culture Collection (ATCC 25829) number and stored according to the recommended storage protocols until needed for experiments. M. morganii strain was divided into two groups, Group (Gr.)

Thermal Properties of 3-Chloro-4-fluoroaniline Abstract 3-Chloro-4-fluoroaniline (CFA) is used as an intermediate for the synthesis of pharmaceutical compounds. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of CFA. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment.

Related: