background preloader

The Impact of Trivedi Effect on Silicon Carbide

The Impact of Trivedi Effect on Silicon Carbide
Abstract Silicon carbide (SiC) is a well-known ceramic due to its excellent spectral absorbance and thermo-mechanical properties. The wide band gap, high melting point and thermal conductivity of SiC is used in high temperature applications. The present study was undertaken to investigate the effect of biofield treatment on physical, atomic, and structural characteristics of SiC powder. The control and biofield treated SiC powder was analysed using X-ray diffraction (XRD), particle size analyzer, surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy techniques with respect to control. Keywords: Biofield treatment; Silicon carbide; X-ray diffraction; FT- IR; Particle size; Surface area Introduction Ceramics have been used for many years in structural, abrasive and electronics devices; and mostly are metal oxides. The biofield is a cumulative outcome of electric and magnetic field, exerted by the human body [10]. Experimental X-ray diffraction study (XRD) G=kλ/(bCosθ), 1.

Related:  Trivedi Effect

The Trivedi Effect Impact on Characterization of Brass Powder Abstract Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. Keywords: Biofield treatment; Brass; X-ray diffraction; Fourier transform infrared; Particle size; Scanning electron microscopy Introduction Brass, an alloy mainly consist of copper (Cu) and zinc (Zn), is widely used in various industries because of their good formability, high corrosion resistance, strength to weight ratio, and ductility. The law of mass-energy inter-conversion has existed in the literature for more than 300 years for which first idea was given by Fritz, after that Einstein derived the well-known equation E=mc2 for light and mass [5,6]. Experimental Brass powder was procured from Alfa Aesar, USA. Particle size analysis X-ray diffraction study L = kλ/(bCosθ), FT-IR spectroscopy 1.

Effect of Biofield Treatment on Boron Nitride Abstract Boron nitride (BN) is known for high hardness, thermal stability, thermal conductivity, and catalytic action. The aim of this study was to investigate the effect of biofield treatment on physical, structural and spectral properties of BN powder. The control and treated sample of BN powder were characterized by X-ray diffraction (XRD), surface area analysis and Fourier transform infrared spectroscopy (FT-IR). XRD results indicated that biofield treatment had substantially changed the crystallinity of BN powder as compared to control. Keywords: Biofield treatment; Boron nitride; X-ray diffraction; FT- IR; Surface area Introduction Boron nitride (BN) is a well-known ceramic material with fascinating properties, such as low density, high melting point, strength, corrosion resistance, and good chemical stability, excellent electrical and thermal properties. Nevertheless, the h-BN has similar crystal structure to graphite hence it is also known as white graphite [6,7]. Mr. Experimental

Impact of Biofield Treatment on Manganese (II, III) Oxide Abstract In Mn3O4, the crystal structure, dislocation density, particle size and spin of the electrons plays crucial role in modulating its magnetic properties. Present study investigates impact of Biofield treatment on physical and atomic properties of Mn3O4. X-ray diffraction revealed the significant effect of biofield on lattice parameter, unit cell volume, molecular weight, crystallite sizes and densities of treated Mn3O4. Keywords: Biofield treatment, Mn3O4, X-ray diffraction, FT-IR, Paramagnetic, ESR, Brunauer-Emmett-Teller analysis, Particle size analysis. Introduction Transition metal oxides (TMOs) constitute most interesting classes of solids, which exhibits different varieties of structures and properties [1]. Recently, magnetism and electrochemical properties in Mn3O4 nanoparticles are controlled by modulating the crystal structure by various processes such as annealing at high temperature [9], doping [10], hydrothermal [11], ultrasonic bath [12] and co-precipitation etc. 1.

Atomic and Crystalline Characteristics of Zirconia and Silica Powders | Trivedi Science Abstract Zirconium oxide and silicon dioxide powders are selected and subjected to a non-contact Biofield energy known to be transmitted by Mahendra Kumar Trivedi. Particle sizes d50 and d99 showed up to 71.5 percent decrease indicating that the energy had caused deformation and fracture as if the powders have been subjected to high energy milling. This is also supported by increase in specific surface area up to 19.48 percent. In the present investigation Zirconium oxide and silicon dioxide powders are exposed to Bio-field. Keywords:Biofield energy; ZrO2; SiO2; X-ray methods Introduction It is known that electrical currents along with their associated magnetic fields are present in human bodies. Mr. Apart from atoms and molecules the next smallest sized materials available are powders. In the present investigation we report the effect of Biofield energy on oxide ceramic powders. Large quantities of zirconium oxide and silicon dioxide are used in powder form in opacifiers. Experimental

Mahendra Trivedi Biofield Energy Effect on Cadmium Powder Abstract Cadmium is widely utilized in nickel-cadmium batteries, stabilizers, and coating applications due to its versatile physico-chemical properties. The aim of present study was to evaluate the impact of biofield treatment on atomic, thermal, and physical properties of cadmium powder. Keywords: Biofield treatment; Cadmium; X-ray diffraction; Differential scanning calorimetry; Particle size; Surface area; Scanning electron microscopy Introduction Cadmium (Cd) element belongs to group IIB in the Periodic Table, which originally exists in Hexagonal Closed Packing (HCP) crystal structure. Experimental Cadmium powder used in present investigation was procured from Alpha Aesar, USA. X-ray diffraction analysis XRD analysis of control and treated cadmium powder was performed using Phillips, Holland PW 1710 XRD diffractometer, which had a copper anode with nickel filter. Crystallite size=k λ/ b Cosθ. Where, λ is the wavelength of x-ray (=1.54056 Å) and k is the equipment constant (=0.94). 1.

The Trivedi Effect® Impact on Properties of Bronze Powder Abstract Bronze, a copper-tin alloy, widely utilizing in manufacturing of gears, bearing, and packing technologies due to its versatile physical, mechanical, and chemical properties. The aim of the present work was to evaluate the effect of biofield treatment on physical and structural properties of bronze powder. Bronze powder was divided into two samples, one served as control and the other sample was received biofield treatment. Control and treated bronze samples were characterized using x-ray diffraction (XRD), particle size analyzer, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Keywords: Biofield treatment; Bronze; X-ray diffraction; FT-IR; Particle size; SEM Introduction Bronze is a metallic alloy, primarily consist of copper and tin in 90:10 ratio, which is also known as “true bronze”. Experimental Bronze powder was procured from Alfa Aesar, USA. X-ray diffraction study The crystallite size (G) was calculated by using formula: SEM analysis

Physical, Thermal and Spectral Properties of Biofield Energy Tr eated 2,4-Dihydroxybenzophenone *The embed functionality can only be used for non commercial purposes. In order to maintain its sustainability, all mass use of content by commercial or not for profit companies must be done in agreement with figshare. Description Study background: 2,4-Dihydroxybenzophenone (DHBP) is an organic compound used for the synthesis of pharmaceutical agents. Methods: The control and treated DHBP samples were further characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser particle size analyser, surface area analyser, Fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis. Results: The XRD study indicated a slight decrease in the volume of the unit cell and molecular weight of treated DHBP as compared to the control sample. Conclusion: Altogether, the results showed significant changes in the physical, thermal and spectral properties of treated DHBP as compared to the control.

Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis Abstract Nocardiosis is a soil-borne aerobic infection caused by Nocardia species commonly affects the respiratory tract. Nocardia otitidis (N. otitidis) is the key organism for non-mycobacterial tuberculosis. Keywords: Nocardia otitidis; Nocardiosis; Antimicrobial susceptibility; Biofield energy treatment; 16S rDNA sequencing; Random amplified polymorphic DNA Abbreviations: NIH/NCCAM: National Institute of Health/ National Center for Complementary and Alternative Medicine; ATCC: American Type Culture Collection; MIC: Minimum Inhibitory Concentration; OTUs: Operational Taxonomic Units; NCBI: National Center for Biotechnology Information; MEGA: Molecular Evolutionary Genetics Analysis; PCR: Polymerase Chain Reaction; RDP: Ribosomal Database Project; RAPD: Random Amplified Polymorphic DNA; CNS: Central Nervous System The genus Nocardia is associated with the group of microorganisms known as the aerobic actinomycetes and belongs to the family of Mycobacteriaceae. Materials and Methods &nsbp;

Effect of Biofield Treatment on Barium Titanate Powder Abstract Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR) and Electron spin resonance (ESR). Keywords: Biofield treatment; Barium titanate; Fourier transform infrared; X-Ray diffraction; Electron spin resonance Introduction Piezoelectric materials are commonly used in optoelectronic industries in fabricating sensor, capacitor, and actuator owing to their piezoelectricity and wide range of dielectric constant. Materials and Methods Biofield treatment X-ray diffraction study Figure 1(a).

Mahendra Trivedi Biofield Therapy on Human Brain Tumor Cells Abstract Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. Results: GBM control cells showed a basal level of cell death 10 hours prior and 10 hours after the biofield treatment, and the rate remained unchanged over the 20 hours period, while in treatment group of GBM, cell death rate was exponentially increased (41%) after biofield treatment as compared to control. Figure 5: Percent change of cell death after 20 hours treatment period with respect to control. Conclusion: Altogether, data suggests that biofield treatment has significantly increased the cell death rate of treated GBM cells and simultaneously boost the viability of normal brain cells. Introduction Materials and Methods Results and Discussion 1.

Related:  Trivedi Effect