
Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenyl *The embed functionality can only be used for non commercial purposes. In order to maintain its sustainability, all mass use of content by commercial or not for profit companies must be done in agreement with figshare. Description Biphenyl is used as an intermediate for synthesis of various pharmaceutical compounds. Comments (0) Published on 25 Nov 2015 - 14:50 (GMT) Filesize is 1.94 MB License (what's this?) Cite "Filename" Place your mouse over the citation text to select it Embed "Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenyl" Show filename on top Place your mouse over the embed code to select and copy it Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenyl Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenyl American Journal of Chemical Engineering Volume 3, Issue 5, September 2015, Pages: 58-65 Received: Oct. 1, 2015; Accepted: Oct. 13, 2015; Published: Nov. 17, 2015 Views 2155 Downloads 50 Authors Mahendra Kumar Trivedi, Trivedi Global Inc., Henderson, USA Rama Mohan Tallapragada, Trivedi Global Inc., Henderson, USA Alice Branton, Trivedi Global Inc., Henderson, USA Dahryn Trivedi, Trivedi Global Inc., Henderson, USA Gopal Nayak, Trivedi Global Inc., Henderson, USA Rakesh Kumar Mishra, Trivedi Science Research Laboratory Pvt. Snehasis Jana, Trivedi Science Research Laboratory Pvt. Biphenyl is used as an intermediate for synthesis of various pharmaceutical compounds. Biphenyl, X-ray Diffraction, Thermal Analysis, Fourier Transform Infrared Spectroscopy, Ultraviolet-Visible Spectroscopy Pagan A (2012) (accessed 30.05.12).
"Characterization of Physical, Spectroscopic and Thermal Properties of Description Biphenyl is used as an intermediate for synthesis of various pharmaceutical compounds. The objective of present research was to investigate the influence of biofield treatment on physical, spectroscopic and thermal properties of biphenyl. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. Citation Information Mahendra Kumar Trivedi. Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenyl E 4&&7&+et al.:&&#;&<2#&)###&+&< 2. Materials and Methods 2.1. 2.2. 2.3. Analysis (TGA-DTA) 2.4. 2.5.
Mahendra Trivedi Trivedi Effect Evaluation of Phenotyping and Genotyping Characteristic of Shigella sonnei after Biofield Treatment - Trivedi Science Abstract: Shigella sonnei (S. sonnei) is a non-motile, rod shape, clinically significant, Gram-negative bacterium. It is commonly associated with dysentery (shigellosis). Keywords: Antimicrobial susceptibility; Biofield treatment; 16S rDNA gene sequencing; Shigella sonnei Abbreviations: MIC: Minimum Inhibitory Concentration; ATCC: American Type Culture Collection; NBPC30: Negative Breakpoint Combo 30; NCBI: National Center for Biotechnology Information; WHO: World Health Organization; 16S rDNA: 16Svedberg Unit Ribosomal Deoxyribonucleic Acid; BLAST: Basic Local Alignment Search Tool; Outs: Operational Taxonomic Units Introduction Development of antimicrobial resistance in several microbes like bacteria, viruses, fungi, or in parasites has been reported globally in the recent few decades. Materials and Methods Two lyophilized vials of S. sonnei [American Type Culture Collection (ATCC) 9290] were purchased from MicroBioLogics, Inc., USA. Biofield treatment Biochemical studies Biotype number 1.
Antimicrobial Susceptibility, Biochemical Characterization and Molecular Typing of Biofield Treated Klebsiella pneumoniae - Trivedi Science Abstract: Pathogenic isolates of Klebsiella pneumoniae (K. pneumoniae), particularly the extended-spectrum β-lactamase (ESBL) producing strains, are mostly associated with the failure of antibiotic therapy in nosocomial infections. The present work was designed to evaluate the impact of Mr. Keywords: Klebsiella pneumoniae; Biofield energy treatment; Antibiogram, Biochemical reactions, Polymorphism; Random Amplified Polymorphic DNA. Abbreviations: CAM: Complementary and Alternate Medicine; NHIS: National Health Interview Survey; NCHS: National Center for Health Statistics; ATCC: American Type Culture Collection; MIC: Minimum Inhibitory Concentration; MEGA: Molecular Evolutionary Genetics Analysis; NBPC 30: Negative Breakpoint Combo Panel 30; RAPD: Random Amplified Polymorphic DNA; PCR: Polymerase chain reaction; ESBL: Extended Spectrum β-Lactamase Introduction The increased medical practice for antibiotic usage creates selection pressure and results emergence of nosocomial pathogens. 1.
Impact of Biofield Treatment on Enterobacter Aerogenes Abstract: Enterobacter aerogenes (E. aerogenes) has been reported as the versatile opportunistic pathogen associated with the hospital infections worldwide. The aim of the study was to determine the impact of Mr. Trivedi’s biofield energy treatment on multidrug resistant clinical lab isolates (LSs) of E. aerogenes. The MDR isolates of E. aerogenes (i.e., LS 45 and LS 54) were divided into two groups, i.e., control and treated. Keywords: Enterobacter aerogenes; Multidrug resistant; Antimicrobial susceptibility; Biofield treatment; Biochemical reactions; Biotyping Introduction Enterobacter is a genus of Gram-negative, rod shaped, facultative anaerobic, and non-spore forming microbes of family Enterobacteriaceae. The biofield is a cumulative outcome of measurable electric and magnetic field, exerted by the human body [11]. Materials and Methods Inoculum preparation The turbidity standard technique using direct inoculation of E. aerogenes was used. Biofield treatment Biochemical reaction study