background preloader

Text mining

Text mining
A typical application is to scan a set of documents written in a natural language and either model the document set for predictive classification purposes or populate a database or search index with the information extracted. Text mining and text analytics[edit] The term text analytics describes a set of linguistic, statistical, and machine learning techniques that model and structure the information content of textual sources for business intelligence, exploratory data analysis, research, or investigation.[1] The term is roughly synonymous with text mining; indeed, Ronen Feldman modified a 2000 description of "text mining"[2] in 2004 to describe "text analytics The term text analytics also describes that application of text analytics to respond to business problems, whether independently or in conjunction with query and analysis of fielded, numerical data. History[edit] Text analysis processes[edit] Subtasks — components of a larger text-analytics effort — typically include: Software[edit]

Automatic summarization Methods[edit] Methods of automatic summarization include extraction-based, abstraction-based, maximum entropy-based, and aided summarization. Extraction-based summarization[edit] Two particular types of summarization often addressed in the literature are keyphrase extraction, where the goal is to select individual words or phrases to "tag" a document, and document summarization, where the goal is to select whole sentences to create a short paragraph summary. Abstraction-based summarization[edit] Extraction techniques merely copy the information deemed most important by the system to the summary (for example, key clauses, sentences or paragraphs), while abstraction involves paraphrasing sections of the source document. While some work has been done in abstractive summarization (creating an abstract synopsis like that of a human), the majority of summarization systems are extractive (selecting a subset of sentences to place in a summary). Maximum entropy-based summarization[edit]

Summarize Articles, Editorials and Essays Automatically

Text Analytics: The process of analyzing unstructured text, extracting relevant information, and transforming it into structured information that can be leveraged in various ways.

Found in: Hurwitz, J., Nugent, A., Halper, F. & Kaufman, M. (2013) Big Data For Dummies. Hoboken, New Jersey, United States of America: For Dummies. ISBN: 9781118504222. by raviii Jan 1

Foster, I. (2016) Big Data and Social Science: A Practical Guide to Methods and Tools. Boca Raton, Florida, United States of America: CRC Press Taylor & Francis Group. ISBN: 9781498751407. by raviii Apr 30

Related: