background preloader

Google Scholar Citations

Google Scholar Citations

The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy | Open Access | OMICS International Abstract Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. Results: GBM control cells showed a basal level of cell death 10 hours prior and 10 hours after the biofield treatment, and the rate remained unchanged over the 20 hours period, while in treatment group of GBM, cell death rate was exponentially increased (41%) after biofield treatment as compared to control. Conclusion: Altogether, data suggests that biofield treatment has significantly increased the cell death rate of treated GBM cells and simultaneously boost the viability of normal brain cells.

The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy Share this: Embed* Cite this: Trivedi, Mahendra Kumar (2015): The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy. figshare. Retrieved 06:06, Dec 04, 2015 (GMT) *The embed functionality can only be used for non commercial purposes. Description Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. Results: GBM control cells showed a basal level of cell death 10 hours prior and 10 hours after the biofield treatment, and the rate remained unchanged over the 20 hours period, while in treatment group of GBM, cell death rate was exponentially increased (41%) after biofield treatment as compared to control. Comments (0) Published on 30 Oct 2015 - 14:09 (GMT) Filesize is 554.87 KB License (what's this?) Cite "Filename" Place your mouse over the citation text to select it

Publication meta - The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy - Publications Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. GBM control and GBM treatment. Similarly, human normal brain cultured cells (non-GBM) were taken and divided into two groups viz. non- GBM control and non-GBM treatment. Effect of Biofield Treatment on Staphylococcus Species Abstract: Antimicrobial resistance is a global health issue in the developing countries. This study was carried out to evaluate the impact of Mr. Keywords Staphylococcus haemolyticus, Staphylococcus epidermidis, Staphylococcus aureus, Biofield Energy Treatment, Multidrug-Resistant, Antibiogram, Biotyping 1. Staphylococci are members of the family Staphylococcaceae. Biofield is the name given to the electromagnetic field that permeates and surrounds the living organisms. 2. 2.1. MDR clinical lab isolates (LSs) of S. haemolyticus (LS 18), S. epidermidis (LS 21) and S. aureus (LS 30) were obtained from stored stock cultures in Microbiology Lab, Hinduja Hospital, Mumbai. 2.2. Treatment groups of each strain, in sealed pack were handed over to Mr. 2.3. The tests carried out on MicroScan were miniaturized of the broth dilution susceptibility tests that have been dehydrated. 2.4. 2.5. 3. 3.1. Table 1. 3.2. Table 3. Table 4. 4. Acknowledgements References Download the original manuscript

"The Potential Impact of Biofield Treatment on Human Brain Tumor Cells:" by Mahendra Kumar Trivedi Description Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. GBM control and GBM treatment. Citation Information Mahendra Kumar Trivedi. Effect of Biofield Treatment on Citrobacter Braakii Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr. Keywords: Citrobacter braakii; Antimicrobial susceptibility; Biofield treatment; Biochemical reaction; Biotype; 16S rDNA analysis; Gramnegative bacteria; Enterobacteriaceae Introduction Citrobacter braakii (C. braakii) is a genus of Gram-negative, straight, facultative anaerobic and motile bacilli bacterium widely distributed in water, soil, and food in the environment. Materials and Methods Experimental design The impact of biofield treatment on tested bacterium C. braakii was evaluated in two groups- Group IIB – Study I Group IIB – Study II Gr.: Group

The Potential Impact of Biofield Treatment on Human Brain Tumor Cells Open Access o u r n a l f t e g i v c y Integrative Oncology Research Article Trivedi et al., J Integr Oncol 2015, 4:3 J Integr Oncol ISSN: 2329-6771 JIO, an open access journal Volume 4 • Issue 3 • 1000141 Keywords: Glial cell; Glioblastoma; Brain tumor; Bioeld treatment; Time-lapse video microscopy Introduction Brain tumors are typically very heterogeneous, aggressive neoplasms at the cellular level which aects both children and adults [1]. individuals born today with brain cancer at dierent point of life. U.S., 22,850 men and women are diagnosed with brain cancer every year, and 15,320 deaths are caused by this disease [2]. organization classication, glioblastoma (GBM) is also known as grade IV astrocytoma [3]. brain tumor. 12 months [4]. assess cellular behavior in real time. a two dimensional image data at dierent time intervals. data are converted to make a movie. in various elds of cancer and stem cell biology for assessment of now a days. Globe. Abstract

Influence of Human Biofield on Klebsiella oxytoca Abstract Klebsiella oxytoca (K. oxytoca) is a Gram-negative microbe generally associated with community and hospitalacquired infections. Due to its clinical significance, we evaluated the effect of biofield treatment on phenotype and biotype characteristics of K. oxytoca (ATCC 43165). The study was performed into three groups i.e. Keywords : Antimicrobials; Biochemicals; Biofield treatment; Biotype; Klebsiella oxytoca Introduction Microorganisms like bacteria, viruses, fungi, and parasites are continuously acquiring the resistance against existing antimicrobials that possess a major global threat to public health. Klebsiella oxytoca (K. oxytoca) is a rod-shaped, nonmotile, Gramnegative bacterium with a prominent polysaccharide capsule, which provides a resistance against host defense mechanisms. The conversion of mass into energy is well known in literature for hundreds of years that was further explained by Fritz [7] and Einstein [8]. Mr. Materials and Methods Study design Results 1.

The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy Title: The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 19th, 2016 Abstract: Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. Results: GBM control cells showed a basal level of cell death 10 hours prior and 10 hours after the biofield treatment, and the rate remained unchanged over the 20 hours period, while in treatment group of GBM, cell death rate was exponentially increased (41%) after biofield treatment as compared to control.

Impact of Biofield Treatment on Klebsiella Pneumoniae Abstract Increasing cancer rates particularly in the developed world are associated with related lifestyle and environmental exposures. Combined immunotherapy and targeted therapies are the main treatment approaches in advanced and recurrent cancer. An alternate approach, energy medicine is increasingly used in life threatening problems to promote human wellness. This study aimed to investigate the effect of biofield treatment on cancer biomarkers involved in human endometrium and prostate cancer cell lines. Each cancer cell lines were taken in two sealed tubes i.e. one tube was considered as control and another tube was subjected to Mr. Keywords: Biofield treatment; Cancer biomarker; ELISA; TNF-α; IL-6; Prostate cancer; Endometrium cancer Introduction Cancer has the potential to invade or spread to other parts of the body which involves abnormal cell growth. Role of immune cells estimation in microenvironment of tumor has been well established. Materials and Methods Experimental design 1.

Impact of Biofield Treatment on Enterobacter Aerogenes Abstract: Enterobacter aerogenes (E. aerogenes) has been reported as the versatile opportunistic pathogen associated with the hospital infections worldwide. The aim of the study was to determine the impact of Mr. Trivedi’s biofield energy treatment on multidrug resistant clinical lab isolates (LSs) of E. aerogenes. The MDR isolates of E. aerogenes (i.e., LS 45 and LS 54) were divided into two groups, i.e., control and treated. Keywords: Enterobacter aerogenes; Multidrug resistant; Antimicrobial susceptibility; Biofield treatment; Biochemical reactions; Biotyping Introduction Enterobacter is a genus of Gram-negative, rod shaped, facultative anaerobic, and non-spore forming microbes of family Enterobacteriaceae. The biofield is a cumulative outcome of measurable electric and magnetic field, exerted by the human body [11]. Materials and Methods Inoculum preparation The turbidity standard technique using direct inoculation of E. aerogenes was used. Biofield treatment Biochemical reaction study

Evaluation of Phenotyping and Genotyping Characterization of Serratia marcescens after Biofield Treatment | Open Access | OMICS International Abstract Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Keywords: Biofield treatment; Magnesium powder; X-ray diffraction; Fourier transform infrared; Particle size; Surface area Introduction Magnesium (Mg) is the third most abundant metal in the earth’s crust. In physics, the energy is considered as the ability to do work; which fundamentally interrelates with matter as E=mc2 (Einstein’s famous equation). Experimental The magnesium powder was purchased from MEPCO, India. X-ray diffraction study XRD analysis of control and treated magnesium powder was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The crystallite size (G) was calculated by using formula: G = kλ/(bCosθ), Conclusion References

Antimicrobial Susceptibility, Biochemical Characterization and Molecular Typing of Biofield Treated Klebsiella pneumoniae - Trivedi Science Abstract: Pathogenic isolates of Klebsiella pneumoniae (K. pneumoniae), particularly the extended-spectrum β-lactamase (ESBL) producing strains, are mostly associated with the failure of antibiotic therapy in nosocomial infections. The present work was designed to evaluate the impact of Mr. Keywords: Klebsiella pneumoniae; Biofield energy treatment; Antibiogram, Biochemical reactions, Polymorphism; Random Amplified Polymorphic DNA. Abbreviations: CAM: Complementary and Alternate Medicine; NHIS: National Health Interview Survey; NCHS: National Center for Health Statistics; ATCC: American Type Culture Collection; MIC: Minimum Inhibitory Concentration; MEGA: Molecular Evolutionary Genetics Analysis; NBPC 30: Negative Breakpoint Combo Panel 30; RAPD: Random Amplified Polymorphic DNA; PCR: Polymerase chain reaction; ESBL: Extended Spectrum β-Lactamase Introduction The increased medical practice for antibiotic usage creates selection pressure and results emergence of nosocomial pathogens. 1.

Related: