background preloader

Evaluation of Phenotyping and Genotyping Characteristic of Shigella sonnei after Biofield Treatment

Abstract Shigella sonnei (S. sonnei) is a non-motile, rod shape, clinically significant, Gram-negative bacterium. It is commonly associated with dysentery (shigellosis). Recently, resistance to third and fourth generation cephalosporins and fluoroquinolones has been reported in S. sonnei. In the present study, we assessed the effect of biofield treatment on phenotyping and genotyping characteristic of S. sonnei (ATCC 9290). The lyophilized samples of S. sonnei were divided in three groups (G): G-I (control, revived), G-II (treatment, revived), and G-III (treatment, lyophilized). Tables at a glance Figures at a glance

http://www.omicsonline.org/open-access/evaluation-of-phenotyping-and-genotyping-characteristic-of-shigella-sonnei-after-biofield-treatment-2155-952X-1000196.php?aid=60387

Publication meta - Bio-field Treatment: A Potential Strategy for Modification of Physical and Thermal Properties of Gluten Hydrolysate and Ipomoea Macroelements - Publications The objective of present study was to study the effect of biofield treatment on physical and thermal properties of gluten hydrolysate (GH) and ipomoea macroelements (IM). The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. Bio-field Treatment: A Potential Strategy for Modification of Physical and Thermal Properties of Gluten Hydrolysate and Ipomoea Macroelements Share this: Embed* Cite this: Trivedi, Mahendra Kumar (2015): Bio-field Treatment: A Potential Strategy for Modification of Physical and Thermal Properties of Gluten Hydrolysate and Ipomoea Macroelements. figshare. Retrieved 09:31, Nov 18, 2015 (GMT)

Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole Title: Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 19th, 2016 Abstract:

Effect of Biofield Energy Treatment on Streptococcus group B: A Postpartum Pathogen *The embed functionality can only be used for non commercial purposes. In order to maintain its sustainability, all mass use of content by commercial or not for profit companies must be done in agreement with figshare. Description Streptococcus agalactiae group B (S. agalactiae gr.

Effect of Biofield Energy Treatment on Streptococcus group B: A Postpartum Pathogen Abstract Streptococcus agalactiae group B (S. agalactiae gr. B) is widespread in nature mainly causes bacterial septicemia and neonatal meningitis. The current study was attempted to investigate the effect of biofield treatment on S. agalactiae gr. B with respect of antimicrobial sensitivity, biochemical reactions and bio typing.

Evaluation of Phenotyping and Genotyping Characteristic of Shigella sonnei after Biofield Treatment Citation: Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Evaluation of Phenotyping and Genotyping Characteristic of Shigella sonnei after Bioeld Treatment. J Biotechnol Biomater 5: 196. doi:10.4172/2155-952X.1000196

Publication meta - Evaluation of Biofield Treatment Dose and Distance in a Model of Cancer Cell Death - Publications Objective: This study assessed the potential influence of biofield treatment on cultured human cancer cells and whether such influence was affected by varying the duration of the treatment (dose) or the distance between the biofield practitioner and the target cells. Design: Biofield treatment dosage was assessed from a short distance (0.25 meters) in three independent experiments involving 1, 2, or 5 treatments, along with another set of three independent and comparable mock experiments. Biofield treatment distance was assessed at 0.25, 25, and * 2000 meters involving two treatments in three independent experiments along with another set of three mock experiments. Intervention: Biofield treatments were delivered by a highly acclaimed biofield practitioner with the intention of diminishing growth of the cells or inducing cancer-cell death. Outcome measure: Cell viability was quantified 20 hours after treatments, using a spectrophotometric assay for live-cell counting.

Thermal and Physical Properties of Biofield Treated Bile Salt and Proteose Peptone 0WordPress0CiteULike0 4 Bile salt (BS) and proteose peptone (PP) are important biomacromolecules being produced inside the human body. The objective of this study was to investigate the influence of biofield treatment on physicochemical properties of BS and PP. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated BS and PP samples were characterized by particle size analyzer (PSA), Brunauer-Emmett-Teller (BET) analysis, differential scanning calorimetry (DSC), x-ray diffraction (XRD), and thermogravimetric analysis (TGA).

Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment Trivedi, M. K. (2015), 'Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment'. %0 Thesis %1 mahendrakumartrivedi %A Trivedi, Mahendra Kumar %B Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment %D 2015 %I Mahendra Kumar Trivedi %J Analytical & Bioanalytical Techniques %K biofield mahendrakumartrivedi myown %N 5 %T Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment %U %V 6 %X Disulfiram is being used clinically as an aid in chronic alcoholism, while nicotinic acid is one of a B-complex vitamin that has cholesterol lowering activity. The aim of present study was to investigate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid.

Related:  Biofield Energy TreatmentBiofield Energy