background preloader

Au service des valeurs du soin

Related:  philo-sciences

Edge.org The Power Of One, Two, Three Sometimes even the simple act of counting can tell you something profound. One day, back in the late 1990s, when I was a correspondent for New Scientist magazine, I got an e-mail from a flack waxing rhapsodic about an extraordinary piece of software. No, my magazine wouldn't. No such compression algorithm could possibly exist; it was the algorithmic equivalent of a perpetual motion machine. The reason: the pigeonhole principle. The pigeonhole principle is a simple counting argument. For example, imagine that the compression software really worked as advertised, and every file is shrunk by a factor of 20 without any loss of fidelity. When compressing files, you bump up against the pigeonhole principle. The pigeonhole principle puts an absolute limit on what a compression algorithm can do. Counting arguments similar to this one have opened up entire new realms for us to explore. Taking the pigeonhole principle into deep space has an even stranger consequence.

Saxophone quartets and probability › Heidelberg Laureate Forum Saxophone quartets consist of four saxophones, usually a baritone, tenor, alto, and soprano, or maybe a second alto instead of a soprano. Because all saxophones are essentially the same instrument, just at different sizes, the instruments blend remarkably well. Saxophone quartets are not common, and yet I've run into two in two days. I arrived in Heidelberg on Saturday to have some time to walk around and get over my jet lag before the Heidelberg Laureate Forum (HLF) events started. While I was walking around I ran into the all-female sax quartet Femdüsax performing in an outdoor plaza. FemdüsaxImage: John D. Then the next day, there was another saxophone quartet performing at the opening ceremony for HLF. Balanced ActionImage: John D. What's the probability of seeing two all-female saxophone quartets in the same area on two consecutive days? How would you approach the problem of assigning a probability to an event like this? E.

Richard Stallman, Rousseau et Kant « Quel est votre philosophe préféré ? » Telle est la question posée par Véronique Bonnet à Richard Stallman, lors d’une récente conférence de ce dernier intitulée « Une société numérique libre ». Ancienne élève de l’ENS, agrégée de philosophie et professeur de philosophie en classes préparatoires. elle nous propose ici une inédite analogie entre Richard Stallman, Rousseau et Kant. Richard Stallman, Rousseau et Kant. Une lecture de sa conférence du 20 septembre à Télécom Paris Tech, par Véronique Bonnet. « Please sir, who is your favourite philosopher? J’inaugure, lors du la conférence de Richard Stallman à Télécom Paris Tech, le 20 septembre, le moment des questions. La réponse de Richard Stallman, dans la démarche généreuse et ouverte qui est la sienne, est formulée dans ma langue : « aucun, je n’ai pas étudié les philosophes ». C’est la première fois que j’assiste in vivo à l’une de ces conférences. Par exemple, dans Qu’est-ce que les Lumières ?

Plus vite que la lumière Posted by Milou on Vendredi, septembre 23, 2011 · 5 Comments Elle est fraîche ma nouvelle, elle est fraîche ! Tous les journaux en parlent, mais on ne pouvait pas laisser passer cette info sans vous en parler de nous même. Aujourd’hui, le CERN dévoile dans un communiqué une observation incroyable. Depuis 2006, des chercheurs italiens en collaboration avec le CERN ont mesuré la vitesse des neutrinos. La très récente observation du CERN tient en quelques mots simples : le neutrino irait plus vite que la lumière. L’expérience OPERA, pour Oscillation Project with Emulsion-tRacking Apparatus, a été mise au point pour observer les oscillations des neutrinos entre leurs différentes saveurs. Cette expérience profite du rayonnement émis par le CERN à Genève : ce rayonnement de haute intensité et de haute énergie est dirigé vers le Laboratoire Nationale du Gran Sasso en Italie (LNGS) situé à 732 km du CERN, via le sous-sol. Selon la Tribune de Genève : Bonus, le tout en images :

What human faces might look like in 100,000 years | Science | The Observer Since we humans are prone to launching chemical weapons, unwittingly killing off the bee population or other factors that could lead to our extinction, it may be presumptuous to imagine what we'll look like in 100,000 years. But designer and researcher Nickolay Lamm has speculated anyway, concluding with some rather startling illustrations that suggest that we'll look a bit like the aliens in Close Encounters of the Third Kind: large, bug eyes, huge foreheads and pigmented skin. It's conjecture, but also more than armchair futurism. Lamm based his illustrations on discussions with Dr Alan Kwan, an expert in computational genomics from Washington University who drew up a research paper to guide Lamm's artwork. Changes in the air and light around us will lead to adjustments in our facial structure, but we'll also be able to change what facial features we're born with, based on what's genetically trendy at the time. Parmy Olson is a technology writer for Forbes magazine in San Francisco.

Can Animals Think? The first time Fu Manchu broke out, zookeepers chalked it up to human error. On a balmy day, the orangutans at the Omaha Zoo had been playing in their big outdoor enclosure. Not long thereafter, shocked keepers looked up and saw Fu and his family hanging out in some trees near the elephant barn. The next nice day, alerted by keepers desperate to keep their jobs, Stones finally managed to catch Fu Manchu in the act. Fu Manchu's jailbreaks made headlines in 1968, but his clever tricks didn't make a big impression on the scientists who specialize in looking for signs of higher mental processes in animals. And neither did I. Washoe's success spurred more language studies and created such ape celebrities as Koko the gorilla and Chantek the orangutan. Over the years I have written several articles and two books on animal-intelligence experiments and the controversy that surrounds them. And so I started exploring the world of animal intelligence from the other side.

Les petits animaux verraient le monde au ralenti Des chercheurs irlandais et écossais ont établi, à partir des travaux réalisés par plusieurs autres équipes de biologistes, que les petits animaux peuvent capter davantage d'informations visuelles et la traiter plus rapidement que les gros. Des scientifiques du Trinity College de Dublin (TCD, Irlande) et de l'Université de St Andrews (Écosse) ont compilé et traduit graphiquement des données (issues de recherches antérieures) portant sur la vitesse à laquelle l'œil de divers animaux peut traiter la lumière (et donc l’information visuelle). Le paramètre retenu était, pour chaque espèce concernée, la ‘fréquence critique’ de clignotement d’une lumière, au-delà de laquelle cette lumière est perçue comme constante et non plus clignotante. Avez-vous déjà partagé cet article? Partager sur Facebook Partager sur Twitter Des cerveaux petits mais performants Une perception plus rapide chez les jeunes et les sportifs

THE NORMAL WELL-TEMPERED MIND I'm trying to undo a mistake I made some years ago, and rethink the idea that the way to understand the mind is to take it apart into simpler minds and then take those apart into still simpler minds until you get down to minds that can be replaced by a machine. This is called homuncular functionalism, because you take the whole person. You break the whole person down into two or three or four or seven sub persons that are basically agents. They're homunculi, and this looks like a regress, but it's only a finite regress, because you take each of those in turn and you break it down into a group of stupider, more specialized homunculi, and you keep going until you arrive at parts that you can replace with a machine, and that's a great way of thinking about cognitive science. The idea is basically right, but when I first conceived of it, I made a big mistake. The vision of the brain as a computer, which I still champion, is changing so fast. It's going to be a connectionist network.

Podcast Science

Related: