background preloader

Mahendra Kumar Trivedi (0000-0002-2548-780X) - ORCID

Mahendra Kumar Trivedi (0000-0002-2548-780X) - ORCID
Mahendra Kumar Trivedi completed his 5-year Bachelor’s degree in Mechanical Engineering in 1985 and had worked as an Engineer for 10 years. In 1995, Mr. Trivedi discovered his unique ability to harness the energy from the universe and transmit it to anywhere on the globe, infusing it into living organisms and nonliving materials, thus optimizing their potential.

Evaluation of Phenotyping and Genotyping Characterization of Serratia marcescens after Biofield Treatment | Open Access | OMICS International Currently, many microorganisms have been acquired the resistance to number of antibiotics and other antimicrobial agents, which were effectively used earlier to cure a microbial infections. The antimicrobial resistant microbes (including bacteria, viruses, fungi, and parasites) can survive in antimicrobial drugs therapy. Therefore, regular treatments are ineffective. The frequent and improper use or misuse of antimicrobial medicines accelerates the emergence of drug-resistant microorganism, which was further spread by meagre infection control and poor sanitary conditions [1]. Serratiamarcescens (S. marcescens) is a rod-shaped Gram-negative bacteria, belongs to family Enterobacteriaceae. It is a facultative anaerobic bacterium that can grow in presence and absence of oxygen at temperatures 30°C to 37°C. The relation between mass-energy was described Friedrich, then after Einstein gave the well-known equation E=mc2 for light and mass [4,5].

"Biofield Treatment: A Potential Strategy for Modification of Physical Description Indole compounds are important class of therapeutic molecules, which have excellent pharmaceutical applications. The objective of present research was to investigate the influence of biofield treatment on physical and thermal properties of indole. The study was performed in two groups (control and treated). Citation Information Mahendra Kumar Trivedi. Effect of Biofield Treatment on Boron Nitride Abstract Boron nitride (BN) is known for high hardness, thermal stability, thermal conductivity, and catalytic action. The aim of this study was to investigate the effect of biofield treatment on physical, structural and spectral properties of BN powder. The control and treated sample of BN powder were characterized by X-ray diffraction (XRD), surface area analysis and Fourier transform infrared spectroscopy (FT-IR). Keywords: Biofield treatment; Boron nitride; X-ray diffraction; FT- IR; Surface area Introduction Boron nitride (BN) is a well-known ceramic material with fascinating properties, such as low density, high melting point, strength, corrosion resistance, and good chemical stability, excellent electrical and thermal properties. Nevertheless, the h-BN has similar crystal structure to graphite hence it is also known as white graphite [6,7]. Mr. Experimental The BN powder was purchased from Sigma Aldrich, USA. X-ray diffraction study Surface area analysis Infrared Spectroscopy 1.

Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus Title: Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus Publication: American Journal of BioScience Select license: Creative Commons Attributions 10.11648/j.ajbio.20150306.13 Updated: March 30th, 2016 Abstract: Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins.

Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus American Journal of BioScience 2015; 3(6): 212-220 213 health and healing [8]. B iofield en ergy treatment has been known as an alterna tive approach that may be useful to a lter the sensitivit y pattern of the antimicrobia ls. Harold Saxton Burr had performed the detailed studies on the correlation of electric current with physiological processes a nd suggested that every si ngle process in the human body had an electrical signifi cance [9]. happening in t he human bod y have strong relationship with magnetic field a s requir ed by Ampere’s law, whic h stated that the moving charge produces magnetic field in surrounding space [ 10, 11]. electromagnetic waves in the form of bio-photons, which surrounds the body and it is commo nly known as biofi eld. Therefore, the biofield co nsists of a n electromagnetic field, being generated by mo ving electrically c harged particles (ions, cell, molecule, etc.) inside the human body. et al. 2015, repo rted that the vari ous scientific instruments [12]. 2. use.

"Antibiogram, Biochemical Reactions and Genotyping Characterization of Description Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on S. aureus. S. aureus (ATCC 25923) was divided into two parts, Group (Gr.) I: control and Gr. Citation Information Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) Antimicrobial Susceptibility Pattern and Biochemical Characteristics of Staphylococcus aureus: Impact of Bio field Treatment.

Influence of Biofield Treatment on Cadmium Powder Abstract Cadmium is widely utilized in nickel-cadmium batteries, stabilizers, and coating applications due to its versatile physico-chemical properties. The aim of present study was to evaluate the impact of biofield treatment on atomic, thermal, and physical properties of cadmium powder. The cadmium powder was divided into two groups, one group as control and another group as treated. The treated group received Mr. Trivedi’s biofield treatment. Keywords: Biofield treatment; Cadmium; X-ray diffraction; Differential scanning calorimetry; Particle size; Surface area; Scanning electron microscopy Introduction Cadmium (Cd) element belongs to group IIB in the Periodic Table, which originally exists in Hexagonal Closed Packing (HCP) crystal structure. Experimental Cadmium powder used in present investigation was procured from Alpha Aesar, USA. X-ray diffraction analysis Crystallite size=k λ/ b Cosθ. Where, λ is the wavelength of x-ray (=1.54056 Å) and k is the equipment constant (=0.94). Conclusion

Impact of Biofield Treatment on Antimony Sulfide Abstract Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3 play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size. Hence in the present investigation, Sb2S3 powder samples were exposed to biofield treatment, and further its physical, structural and spectral properties are investigated. The particle size analysis showed larger particle size and surface area after treatment. X-ray diffraction (XRD) analysis revealed polycrystalline orthorhombic structure with superior crystallinity in treated Sb2S3 along with significant changes in the lattice parameters, which led to changes in unit cell volume and density. Introduction Experimental Particle size analysis Surface area analysis X-ray diffraction Infrared spectroscopy 1.

Publication meta - Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus - Publications Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. The current study was attempted to investigate the effect of Mr. Trivedi's biofield treatment on S. aureus.

Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated <i>Staphylococcus aureus</i> :: Science Publishing Group Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus American Journal of BioScience Volume 3, Issue 6, November 2015, Pages: 212-220 Received: Sep. 19, 2015; Accepted: Sep. 30, 2015; Published: Oct. 16, 2015 Views 1954 Downloads 36 Authors Mahendra Kumar Trivedi, Trivedi Global Inc., Henderson, USA Alice Branton, Trivedi Global Inc., Henderson, USA Dahryn Trivedi, Trivedi Global Inc., Henderson, USA Gopal Nayak, Trivedi Global Inc., Henderson, USA Sambhu Charan Mondal, Trivedi Science Research Laboratory Pvt. Snehasis Jana, Trivedi Science Research Laboratory Pvt. Abstract Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. Staphylococci, Staphylococcus aureus, Antimicrobial Sensitivity, Biofield Treatment, Biochemical Reaction, Biotype, 16S rDNA, Gram-Positive Bacteria Balaban N, Rasooly A (2000) Staphylococcal enterotoxins.

Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis *The embed functionality can only be used for non commercial purposes. In order to maintain its sustainability, all mass use of content by commercial or not for profit companies must be done in agreement with figshare. Description Nocardiosis is a soil-borne aerobic infection caused by Nocardia species commonly affects the respiratory tract. Nocardia otitidis (N. otitidis) is the key organism for non-mycobacterial tuberculosis. Comments (0) Published on 24 Oct 2015 - 23:22 (GMT) Filesize is 676.03 KB License (what's this?) Cite "Filename" Place your mouse over the citation text to select it Embed "Evaluation of Antibiogram, Genotype and Phylogenetic Analysis of Biofield Treated Nocardia otitidis" Show filename on top Place your mouse over the embed code to select and copy it

Related: