background preloader

Fractales sur Google Earth

Fractales sur Google Earth
Written by Paul Bourke Started: October 2010. Last updated: October 2012 Introduction The following is a "photographic" gallery of fractal patterns found while exploring the planet with Google Earth. Self Similarity Fractals are usually associated with self similarity across scales. An example of this for a river system is illustrated below [KMZ file], clicking on an image will give the high resolution version of the image without the markings. Another way to think about whether something exhibits self similarity is if it can be interpreted to exist at different scales. Related:  Beauté mathématique

Beauté et esthétique mathématique Simon Diner Il faut se garder du hasard comme du calcul Peter MONDRIAN Deux choses menacent le monde, l’ordre et le désordre. Ce que je cherche avant tout est l’expression Henri MATISSE Le problème des rapports entre beauté, harmonie et propriétés mathématiques a été largement posé et illustré dans l'Antiquité. Le rôle, contesté ou non, du nombre d'or, l'utilisation des tracés régulateurs par les peintres, les problèmes de la perspective, et la pratique et la théorie de l'architecture sont les manifestations les plus connues de recettes mathématiques pour l'obtention de la beauté. Il y a là un immense domaine où l'art et la mathématique se côtoient, s'observent, se fécondent mutuellement. Brillamment illustrée par Albrecht Dürer et Leonardo da Vinci cette synergie entre art et science va souffrir de l'isolement progressif des deux domaines, au point de ne pas constituer aujourd'hui une zone bien explorée et bien intégrée de la culture. L’esthétique n’est pas seulement l’étude de la beauté.

How to Trick Your Brain for Happiness This month, we feature videos of a Greater Good presentation by Rick Hanson, the best-selling author and trailblazing psychologist. In this excerpt from his talk, Dr. Hanson explains how we can take advantage of the brain’s natural “plasticity”—it’s ability to change shape over time. gobyg There’s this great line by Ani Tenzin Palmo, an English woman who spent 12 years in a cave in Tibet: “We do not know what a thought is, yet we’re thinking them all the time.” It’s true. In recent years, though, we have started to better understand the neural bases of states like happiness, gratitude, resilience, love, compassion, and so forth. Ultimately, what this can mean is that with proper practice, we can increasingly trick our neural machinery to cultivate positive states of mind. But in order to understand how, you need to understand three important facts about the brain. Fact one: As the brain changes, the mind changes, for better or worse. Fact two: As the mind changes, the brain changes. 1. 2. 3.

Wiki : Beauté mathématique Un article de Wikipédia, l'encyclopédie libre. Certains mathématiciens recherchent dans leur travail ou dans les mathématiques en général, un plaisir esthétique. Ils expriment ce plaisir en décrivant de « belles » parties des mathématiques. Ils peuvent considérer les mathématiques comme un art ou comme une activité créative. Bertrand Russell a donné son sens de la beauté mathématique en ces termes : « Les mathématiques, considérées à leur juste mesure, possèdent non seulement la vérité, mais la beauté suprême, une beauté froide et austère, comme celle d'une sculpture, sans référence à une partie de notre fragile nature, sans les effets d'illusion magnifiques de la peinture ou de la musique, pourtant pur et sublime, capable d'une perfection sévère telle que seulement les plus grands arts peuvent la montrer. Paul Erdős évoqua le caractère ineffable de la beauté des mathématiques en déclarant « pourquoi les nombres sont-ils beaux ? Dans les formules[modifier | modifier le code] .

2002 January 14 - Sun Halo at Winter Solstice Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer. 2002 January 14 Sun Halo at Winter Solstice Credit & Copyright: Philip Appleton (SIRTF Science Center), Caltech Tomorrow's picture: Fifth Most Powerful Explosion Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (USRA)NASA Technical Rep.: Jay Norris. Symétries et morphogenèse

Wonder and Skepticism Article Carl Sagan Volume 19.1, January / February 1995 I was a child in a time of hope. I grew up when the expectations for science were very high: in the thirties and forties. Even with an early bedtime in winter you could see the stars. Not only could nobody tell me, but nobody even had the sense that it was an interesting question. That seemed to me a fantastically clever idea. It was in there. I sensed awe. It seemed the most exciting thing to study. It’s been my enormous good luck—I was born at just the right time—to have had, to some extent, those childhood ambitions satisfied. Science is still one of my chief joys. There’s another reason I think popularizing science is important, why I try to do it. We have a civilization based on science and technology, and we’ve cleverly arranged things so that almost nobody understands science and technology. The predictive powers of some areas, at least, of science are phenomenal. Now how does it work? Why do we put up with it?

Figures for "Impossible fractals" Figures for "Impossible fractals" Cameron Browne Figure 1. The tri-bar, the Koch snowflake and the Sierpinski gasket. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. 45° Pythagorean tree, balanced 30° Pythagorean tree and extended tri-bar. Figure 14. Figure 15. Figure 16. Rectangle World – HTML5 Canvas and JavaScript: Tutorials and Experiments Making the Paper Snowflake Web App, Part 1 – Layering canvases Published on December 31, 2013 My first blog post explaining some of the code behind my Paper Snowflake web app. In this installment, we look at how multiple canvases are used together to handle drawing and interactivity tasks. Read more… Paper Snowflake Maker – Create, save, and share snowflakes with this HTML5 Canvas app. Published on December 12, 2013 Create virtual paper snowflakes with this web app built around the HTML5 canvas. Read more… N-body planar choreographies: illustrating mathematics in HTML5 canvas Published on August 20, 2013 An application built in HTML5 and canvas is used to illustrate some intriguing mathematics. Read more… Dithered gradients for Processing. Published on July 29, 2013 I share some code that you can use in Processing applications to create linear and radial gradients. Read more… Decay Clock: A Processing sketch. Published on July 24, 2013 Read more… ColorBoids: The boid algorithm in five dimensions

Related: