background preloader

Human Energy Treatment of Brass Powder & X-Ray Diffraction Analysis

0WordPress0CiteULike0 New Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Control and treated brass powder were characterized using particle size analyser, X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Your session has expired but don’t worry, your message has been saved.Please log in and we’ll bring you back to this page. Your evaluation is of great value to our authors and readers. Review When you're done, click "publish" Only blue fields are mandatory. No one besides you has access to this list. Your message has been sent. Description Your comment

Related:  Mahendra Trivedi's PublicationsBiofield EnergySpiritual Healingsarkar7923Unique Energy

Study of Myristic Acid- Energy Effect Title: Physical, Spectroscopic and Thermal Characterization of Biofield treated Myristic acid Publication: Fundamentals of Renewable Energy and Applications Biofield Treatment Impact of Biofield Energy Treatment on Soil Fertility Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Sambhu Charan Mondal2, Snehasis Jana2, * 1Trivedi Global Inc., Henderson, USA S. Sonnei - Alteration in Antimicrobial Sensitivity Description Shigella sonnei (S. sonnei) is a non-motile, rod shape, clinically significant, Gram-negative bacterium. It is commonly associated with dysentery (shigellosis). Recently, resistance to third and fourth generation cephalosporins and fluoroquinolones has been reported in S. sonnei.

Characterization of Physical and Structural Properties of Brass Powder Title: Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatment Publication: Powder Metallurgy & Mining Biotype Number of E. aerogenes- Biofield Impact Volume 5 • Issue 3 • 1000155 Transl Med ISSN: 2161-1025 TM, an open access journal Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, et al. (2015) Characterization of Phenotype and Genotype of Bioeld Treated Enterobacter aerogenes. The Trivedi Effect m-toluic acid (MTA) is widely used in manufacturing of dyes, pharmaceuticals, polymer stabilizers, and insect repellents. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of MTA. MTA sample was divided into two groups that served as treated and control. The treated group received Mr. Trivedi's biofield treatment. Subsequently, the control and treated samples were evaluated using X-ray diffraction (XRD), surface area analyser, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy.

Increasing Soil Fertility for Increasing Yield of Quality Crops Measurement of soil components such as microbial population, minerals and obviously the content of organic carbon play the important roles for the productivity of crops and plants. The present study was attempted to evaluate the impact of Mr. Trivedi’s biofield energy treatment on soil for its physical (electrical conductivity), chemical (minerals) and microbial flora (bacteria and fungi). A plot of lands was assigned for this study with some already grown plants. This plot was divided into two parts. One part was considered as control, while another part was subjected to Mr.

Biotype Number of Shigella Sonnei Citation: Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Evaluation of Phenotyping and Genotyping Characteristic of Shigella sonnei after Bioeld Treatment. J Biotechnol Biomater 5: 196. doi:10.4172/2155-952X.1000196 Page 2 of 5

Related:  Biofield Science