background preloader

Study of Stenotrophomonas Maltophilia Antibiotic Susceptibility

0WordPress0CiteULike0 New Stenotrophomonas maltophilia (S. maltophilia) is a Gram-negative bacillus, an opportunistic pathogen, particularly among nosocomial infections. Multi-drug resistant strains are associated with very high rate of morbidity and mortality in severely immunocompromised patients. Present study was designed to evaluate the effect of biofield treatment against multidrug resistant S. maltophilia. Clinical sample of S. maltophilia was collected and divided into two groups i.e. control and biofield treated which were analyzed after 10 days with respect to control. The following�parameters viz. susceptibility pattern, minimum inhibitory concentration (MIC), biochemical studies and biotype number of both control and treated samples were measured by MicroScan Walk-Away® system. Your session has expired but don’t worry, your message has been saved.Please log in and we’ll bring you back to this page. Your evaluation is of great value to our authors and readers. Review

http://www.peerevaluation.org/read/libraryID:30282

Related:  Evaluation of Biofield TreatmentBiofield TreatmentBiofield EnergyEnergy Healing Treatmentprathmeshtiwari

Characterization of Silicon Carbide Powder Description Silicon carbide (SiC) is a well-known ceramic due to its excellent spectral absorbance and thermo-mechanical properties. The wide band gap, high melting point and thermal conductivity of SiC is used in high temperature applications. The present study was undertaken to investigate the effect of biofield treatment on physical, atomic, and structural characteristics of SiC powder. Surface Area Study of Boron Nitride Powder Description Boron nitride (BN) is known for high hardness, thermal stability, thermal conductivity, and catalytic action. The aim of this study was to investigate the effect of biofield treatment on physical, structural and spectral properties of BN powder. The control and treated sample of BN powder were characterized by X-ray diffraction (XRD), surface area analysis and Fourier transform infrared spectroscopy (FT-IR).

Biotype Number of E. aerogenes- Biofield Impact Volume 5 • Issue 3 • 1000155 Transl Med ISSN: 2161-1025 TM, an open access journal Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, et al. (2015) Characterization of Phenotype and Genotype of Bioeld Treated Enterobacter aerogenes. Human Energy Impact on Stenotrophomonas maltophilia Stenotrophomonas maltophilia ( S. maltophilia ) is a Gram-negative bacillus, an opportunistic pathogen, particularly among nosocomial infections. Multi-drug resistant strains are associated with very high rate of morbidity and mortality in severely immunocompromised patients. Present study was designed to evaluate the effect of biofield treatment against multidrug resistant S. maltophilia . Clinical sample of S. maltophilia was collected and divided into two groups i.e. control and biofield treated which were analyzed after 10 days with respect to control. The following parameters viz. susceptibility pattern, minimum inhibitory concentration (MIC), biochemical studies and biotype number of both control and treated samples were measured by MicroScan Walk-Away® system.

Effects of Unique Energy Treatment on S. Maltophilia Genotype Abstract Stenotrophomonas maltophilia (S. maltophilia) is a Gram-negative bacillus, an opportunistic pathogen, particularly among nosocomial infections. Multi-drug resistant strains are associated with very high rate of morbidity and mortality in severely immunocompromised patients. Present study was designed to evaluate the effect of biofield treatment against multidrug resistant S. maltophilia. Clinical sample of S. maltophilia was collected and divided into two groups i.e. control and biofield treated which were analyzed after 10 days with respect to control. The following parameters viz. susceptibility pattern, minimum inhibitory concentration (MIC), biochemical studies and biotype number of both control and treated samples were measured by MicroScan Walk-Away® system.

Biofield Treatment Trivedi MK2, Nayak G2, Tallapragada RM2, Patil S2, Latiyal O1 and Jana S1* 1Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Road, Bhopal-462026, Madhya Pradesh, India 2Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA *Corresponding Author:

Impact of Human Energy Treatment on Boron Nitride Citation: Trivedi MK, Patil S, Nayak G, Jana S, Latiyal O (2015) Inuence of Bioeld Treatment on Physical, Structural and Spectral Properties of Boron Nitride. J Material Sci Eng 4: 181. doi:10.4172/2169-0022.1000181 Page 5 of 5 Volume 4 • Issue 4 • 1000181 J Material Sci Eng

RAPD Analysis of Enterobacter Aerogenes Title: Characterization of Phenotype and Genotype of Biofield Treated Enterobacter aerogenes Select license:

Related:  Biofield Science