background preloader

Assessment of FT-IR & UV Spectrum of Paracetamol

Title: Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam Publication: Chemical Sciences Journal Select license: Creative Commons Attributions-NonCommercial-ShareAlike Updated: November 19th, 2016 Abstract: Paracetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain and inflammatory diseases.

http://www.academicroom.com/article/effect-biofield-treatment-spectral-properties-paracetamol-and-piroxicam

Bonding & Structural Properties of Paracetamol Description Paracetamol and piroxicam are non-steroidal anti-inflammatory drugs (NSAIDs), widely used in pain and inflammatory diseases. The present study aimed to evaluate the impact of biofield treatment on spectral properties of paracetamol and piroxicam. The study was performed in two groups (control and treatment) of each drug.

Publication meta - Influence of Biofield Treatment on Physicochemical Properties of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose Cellulose based polymers have shown tremendous potential as drug delivery carrier for oral drug delivery system (DDS). Hydroxyethyl cellulose (HEC) and hydroxypropyl cellulose (HPC) are widely explored as excipients to improve the solubility of poorly water soluble drugs and to improve self-life of dosage form. This work is an attempt to modulate the physicochemical properties of these cellulose derivatives using biofield treatment. The treated HEC and HPC polymer were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The XRD studies revealed a semi-crystalline nature of both the polymers. Crystallite size was computed using Scherrer's formula, and treated HEC polymer showed a significant increase in percentage crystallite size (835%) as compared to the control polymer.

Publication meta - Bio-field Treatment: An Effective Strategy to Improve the Quality of Beef Extract and Meat Infusion Powder The present research work investigated the influence of bio-field treatment on two common flavoring agents used in food industries namely beef extract powder (BEP) and meat infusion powder (MIP). The treated powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), particle size analysis, surface area analysis, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The FT-IR results showed disappearance of triglycerides peaks in both the treated powders as compared to control. XRD results corroborated the amorphous nature of both control and treated samples. The BEP showed enhanced average particle size (d 50) and d 99 (size exhibited by 99% of powder particles) by 5.7% and 16.1%, respectively as compared to control.

Examine the Spectral Properties of Paracetamol Volume 6 • Issue 3 • 100098 Chem Sci J ISSN: 2150-3494 CSJ, an open access journal Research Article Open Access Trivedi et al., Chem Sci J 2015, 6:3 Influence of Biofield Treatment on Physicochemical Properties of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose Share this: Embed* Cite this: Publication meta - Evaluation of Biofield Treatment on Physical, Atomic and Structural Characteristics of Manganese (II, III) Oxide In Mn3O4, the crystal structure, dislocation density, particle size and spin of the electrons plays crucial role in modulating its magnetic properties. Present study investigates impact of Biofield treatment on physical and atomic properties of Mn3O4. X-ray diffraction revealed the significant effect of biofield on lattice parameter, unit cell volume, molecular weight, crystallite sizes and densities of treated Mn3O4. XRD analysis confirmed that crystallinity was enhanced and dislocation density was effectively reduced by 80%. FTIR spectroscopic analysis revealed that Mn-O bond strength was significantly altered by biofield treatment.

Methyl 2-Naphthyl Ether- An Anti-Inflammatory Agent Methyl-2-naphthyl ether (MNE) is an organic compound and used as the primary moiety for the synthesis of several antimicrobial and anti-inflammatory agents. This study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal, and spectroscopic properties of MNE. The study was carried out in two groups i.e., control and treated. The treated group was subjected to Mr. Trivedi’s biofield treatment. Afterward, the control and treated samples of MNE were evaluated using X-ray diffraction (XRD), surface area analyzer, differential scanning calorimetry (DSC), thermogravimetric analysis-derivative thermogravimetric analysis (TGA-DTG), Fourier transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopy.

"Influence of Biofield Treatment on Physicochemical Properties of Hydro" by Mahendra Kumar Trivedi Description Cellulose based polymers have shown tremendous potential as drug delivery carrier for oral drug delivery system (DDS). Hydroxyethyl cellulose (HEC) and hydroxypropyl cellulose (HPC) are widely explored as excipients to improve the solubility of poorly water soluble drugs and to improve self-life of dosage form. Evaluation of Biofield Modality on Viral Load of Hepatitis B and C Viruses Study background: Nowadays, hepatitis is a major challenge for clinical research, regulatory bodies, and clinicians who are trying to assess the more effectiveness of antiviral therapy against patients. Viral load count is the amount of particular viral DNA or RNA in a blood samples. It is one of the surrogate biomarker of hepatitis. High viral load indicates that the immune system is failed to fight against viruses. The aim of this study was to evaluate the impact of biofield modality on hepatitis B virus (HBV) and hepatitis C virus (HCV) in terms of viral load as surrogate marker. Method: The viral load assay was performed on stock human plasma samples of HBV and HCV before and after 7 days of biofield treatment using Roche COBAS® AMPLICOR analyzer according to manufacturer’s instructions.

Alterations in Methyl 2-Naphthyl Ether Physical Properties Description Methyl-2-naphthyl ether (MNE) is an organic compound and used as the primary moiety for the synthesis of several antimicrobial and anti-inflammatory agents. This study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal, and spectroscopic properties of MNE. Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated magnesium samples were characterized using X-ray diffraction (XRD), surface area and particle size analyzer.

Evaluation of Biofield Treatment on Physical, Atomic and Structural Characteristics of Manganese (II, III) Oxide Research Article Open Access Patil et al., J Material Sci Eng 2015, 4:4 Material Science & Engineering Methyl 2-Naphthyl Ether Characterization & Energy Treatment o u r n a

Related: