background preloader

Cluster analysis

Cluster analysis
The result of a cluster analysis shown as the coloring of the squares into three clusters. Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. Besides the term clustering, there are a number of terms with similar meanings, including automatic classification, numerical taxonomy, botryology (from Greek βότρυς "grape") and typological analysis. The subtle differences are often in the usage of the results: while in data mining, the resulting groups are the matter of interest, in automatic classification the resulting discriminative power is of interest. Definition[edit] Algorithms[edit]

Related:  Machine LearningAI

Statistical classification In machine learning and statistics, classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known. An example would be assigning a given email into "spam" or "non-spam" classes or assigning a diagnosis to a given patient as described by observed characteristics of the patient (gender, blood pressure, presence or absence of certain symptoms, etc.). In the terminology of machine learning,[1] classification is considered an instance of supervised learning, i.e. learning where a training set of correctly identified observations is available.

Welcome — Theano 0.7rc1 documentation How to Seek Help¶ The appropriate venue for seeking help depends on the kind of question you have. How do I? – theano-users mailing list or StackOverflowI got this error, why? Natural language processing Natural language processing (NLP) is a field of computer science, artificial intelligence, and linguistics concerned with the interactions between computers and human (natural) languages. As such, NLP is related to the area of human–computer interaction. Many challenges in NLP involve natural language understanding, that is, enabling computers to derive meaning from human or natural language input, and others involve natural language generation. History[edit] The history of NLP generally starts in the 1950s, although work can be found from earlier periods.

Machine learning Machine learning is a subfield of computer science[1] that evolved from the study of pattern recognition and computational learning theory in artificial intelligence.[1] Machine learning explores the construction and study of algorithms that can learn from and make predictions on data.[2] Such algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions,[3]:2 rather than following strictly static program instructions. Machine learning is closely related to and often overlaps with computational statistics; a discipline that also specializes in prediction-making. It has strong ties to mathematical optimization, which deliver methods, theory and application domains to the field. Machine learning is employed in a range of computing tasks where designing and programming explicit, rule-based algorithms is infeasible.

Very Brief Introduction to Machine Learning for AI — Notes de cours IFT6266 Hiver 2010 The topics summarized here are covered in these slides. Intelligence The notion of intelligence can be defined in many ways. Here we define it as the ability to take the right decisions, according to some criterion (e.g. survival and reproduction, for most animals). To take better decisions requires knowledge, in a form that is operational, i.e., can be used to interpret sensory data and use that information to take decisions. Automatic summarization Methods[edit] Methods of automatic summarization include extraction-based, abstraction-based, maximum entropy-based, and aided summarization. Extraction-based summarization[edit] Two particular types of summarization often addressed in the literature are keyphrase extraction, where the goal is to select individual words or phrases to "tag" a document, and document summarization, where the goal is to select whole sentences to create a short paragraph summary.

Computational statistics Statistics algorithms were one of the first uses of modern computers. Computational statistics, or statistical computing, is the interface between statistics and computer science. It is the area of computational science (or scientific computing) specific to the mathematical science of statistics. This area is also developing rapidly, leading to calls that a broader concept of computing should be taught as part of general statistical education.[1]

Introduction to Deep Learning Algorithms — Notes de cours IFT6266 Hiver 2010 See the following article for a recent survey of deep learning: Yoshua Bengio, Learning Deep Architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009 Depth The computations involved in producing an output from an input can be represented by a flow graph: a flow graph is a graph representing a computation, in which each node represents an elementary computation and a value (the result of the computation, applied to the values at the children of that node). Consider the set of computations allowed in each node and possible graph structures and this defines a family of functions.

Named-entity recognition Named-entity recognition (NER) (also known as entity identification, entity chunking and entity extraction) is a subtask of information extraction that seeks to locate and classify elements in text into pre-defined categories such as the names of persons, organizations, locations, expressions of times, quantities, monetary values, percentages, etc. Most research on NER systems has been structured as taking an unannotated block of text, such as this one: Jim bought 300 shares of Acme Corp. in 2006. And producing an annotated block of text that highlights the names of entities: Regression analysis Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Regression analysis is also used to understand which among the independent variables are related to the dependent variable, and to explore the forms of these relationships. In restricted circumstances, regression analysis can be used to infer causal relationships between the independent and dependent variables.