background preloader


Facebook Twitter

Shopping for a robot army: A day at the don’t-call-it-a-drone show. This week, the Association for Unmanned Vehicle Systems International (AUVSI) took over Washington, DC's convention center for its annual Unmanned Systems show. Once mostly a government- and defense-focused event, the conference has ramped up in size and scope in anticipation of the Federal Aviation Administration's decision on how to "integrate" unmanned aircraft into civil airspace. Among the thousands of companies hawking their wares at the event, there were representatives from some 25 teams of state and local authorities, each vying to make its region one of the coveted designated test locations that will be announced by the FAA in December. Some, like Oklahoma, had their own booths set up to draw support from unmanned system manufacturers.

And about the "d" word—the members of the AUVSI want us all to drop the word "drone. " In the press room, the password for the Wi-Fi network was "It'snotadrone. " Of course, when the US market does open, it will be the biggest in the world. Vector control (motor) Vector control, also called field-oriented control (FOC), is a variable frequency drive (VFD) control method which controls three-phase AC electric motor output by means of two controllable VFD inverter output variables:[1] (Voltage angle, or phase, is only indirectly controlled)[2] FOC is a control technique that is used in AC synchronous and induction motor applications[3] that was originally developed for high-performance motor applications which can operate smoothly over the full speed range, can generate full torque at zero speed, and is capable of fast acceleration and deceleration but that is becoming increasingly attractive for lower performance applications as well due to FOC's motor size, cost and power consumption reduction superiority.[4][5] Block diagram from Blaschke's 1971 US patent application Technical University Darmstadt's K.

Hasse and Siemens' F. The Park transformation has long been widely used in the analysis and study of synchronous and induction machines. 1. 2. 3. Omni wheels. Katy Levinson, Don't Fix It In Software, Defcon 19. Hexapod Figures Out How to Walk After You Chop Its Leg Off.

If the movies have taught us anything, it's that chopping a futuristic death robot's leg off does not significantly diminish its capacity to hunt you down. Want to know where that capacity for being utterly unstoppable came from? It's this, right here. After just 20 minutes worth of iterations, in the above video example the robot has come up with a five-legged gait that moves it along at 18 cm/s, as compared to the undamaged 26 cm/s gait. Not bad, considering that an unmodified five-legged gait had it limping along at just 8 cm/s. The cool bit about this recovery model is that it doesn't require any specific information about what parts are malfunctioning or missing.

Instead, it's just got a known model of how it's supposed to work, and if the actual performance that it measures is less efficient, it starts searching for new behaviors. You can read the entire paper (hooray!) [ Fast Damage Recovery in Robotics with the T-Resilience Algorithm ] via [ ISIR ] Orbotix Rolls Out Speedy Next-Gen Sphero. Sphero is a robotic ball that you can drive around with your smartphone. It's a lot fun, and we've been especially impressed with the way that you can get down into its software and mess with it, changing it from a relatively simple remote controlled toy into a real autonomous robot.

Heck, you can even control it with ROS. Today, Orbotix is introducing the Sphero 2.0, packed with new hardware that makes it faster, smarter, faster, brighter, and faster than ever. And did we mention it's faster? Because it's definitely faster. A quick rundown on the Sphero if you're not familiar: it's a roughly softball-sized plastic sphere with a clever system inside that it uses to drive itself around without having to rely on any external motors or controls. It kinda looks a little bit like magic, but it helps to think of it just like there's a little remote control car in there that drives, spinning the outside shell to move. Potential, really, is what we like most about Sphero. . [ Sphero ] Makerbot lance son Replicator 2. L'impression 3D fait énormément parler d'elle ces derniers mois. Et l'engouement est réel, imprimer en 3D une figurine, un logo, un gâteau, un verre, tout semble être possible.

Makerbot s'est rendu célèbre en commercialisant la première imprimante abordable de ce genre. Il récidive avec une version plus rapide et plus ergonomique, la Replicator 2. Au menu de cette nouvelle version, on se retrouve avec une boîte de métal lisse et brillant ornée de nombreuses et lumineuses LEDs. Capable d’imprimer des objets d’une dimension maximale de 28,4 x 15,2 x 15,4 cm, Replicator 2 vous sera livrée montée et avec l’application MakerWare, le logiciel qui simplifiera tous vos projets de création ! Basées à Brooklyn et fières de leur précédent succès, les industries Makerbot sont persuadées que l’efficacité et la simplicité d’utilisation de leur nouveau bébé permettra à tout un chacun d’oublier le tarif de 2 199$ pour se porter acquéreur d’une telle imprimante.

[theverge] The Whittaker paddle wheel. The Whittaker style paddle wheel uses off-axis blades to increase efficiency and eliminate fouling. It is ideally suited for amphibious projects and applications where weeds would tangle in a normal propeller. It is low-draft and works well whether the blades dip just 3" into the water or go as deep as 13". Here's how I made one using a recycled plastic barrel and a bicycle crankset. The Whittaker from dawn thomas on Vimeo. What you'll use up: 1 large plastic barrel (HDPE) (the one in this Instructable is probably 30 to 35 gallons) [NOTE: I've since learned that the BLUE HDPE barrels are far less prone to fracturing than the WHITE barrel shown in ths instructable-- so use a blue barrel if you can!]

A couple of lengths of 2x2 redwood About 2 feet flat steel approx 1/8" thick,1-1/2" Bicycle crank, 3-part style (the pedals come off the spindle) 30 stainless steel wood screws and 18 fender washers Rust-inhibiting spray paint. Crawlerbot 2000. Check out my cool new toy guys, I (a high school student) created this magnificent monster from scratch; all parts were designed and created specifically for this project At first I designed 3d models and created blueprints of the chassis and the track system.

Soon I created a die for the gears and track chain. After each piece was put together, I ran into a problem with the driving mechanism; the flange broke. Nevertheless, I enhanced my designs and fixed the major issues. The features of my robot include: Two windshield wiper motors (powered by a 12v 5ah SLA battery) driving two gears as a support bar causes the back gears to follow the rotation a wireless spy camera in the front --- footage viewed on TV with its transmitter a distance sensor in the front a buzzer on the back (I don't know why?) Lights for cosmetics Two servo switches (operating the motion of the motors) that are controlled with a futaba (6 channel) RC receiver.

Every vote counts, please share this thread with others. Building UP an ArduCopter! Inexpensive Wooden Tri-copter! Biting Obstacles Autonomous Robot « Sanglier » (boar) How to Pick the Right Electronics Board for Your DIY Project. Crabster, un robot crabe explorateur des fonds marins [Vidéo] Mercredi 10 juillet Vidéo - 10 juillet 2013 :: 08:00 :: Par Oubliez Tintin à bord de son sous-marin en forme de requin, l’avenir de l’exploration sous-marin, c’est le crabe-homard mécanique. Crabster, un robot impressionnant et puissant a été pensé pour aller là où d’autres machines peinent.

On pourrait croire que cela va s’arrêter, mais non, la ménagerie mécanique continue encore et toujours de s’agrandir. Rappelons les faits, nous avons eu le robot-araignée agile sur ses huit pattes, le robot-chat rapide pour sa petite taille et le robot-singe capable de tenir en équilibre sur des surfaces difficiles. Aujourd’hui, nous accueillons le robot-crabe ! Un robot mobile Contrairement aux modèles dont je vous avais précédemment parlé, le Crabster n’est pas un petit robot mais une machine qui fait la taille d’une voiture Smart. L’explorateur de fonds marins Bientôt en test Dans un mois, le Crabster fera ses premiers vrais tests dans la mer. (source) Welcome to RS Online. Rethink Robotics :: Baxter. Engineering is Awesome, 8bitfuture: Autonomous NASA rover released on... Smartdrones | Toute l'actualité des drones et du vol en immersion. Un robot de bric et de broc.

Par Korben En utilisant une paire d'enceintes, une vieille radio, quelques lecteurs DVD et d'autres appareils électroménagers, Mark Haywood, un ancien policier, a mis au point durant 4 ans, un robot baptisé HEX qui mesure 1,30 m et qui est plus une véritable œuvre d'art qu'un robot de haute technologie. Mais ne vous moquez pas de HEX puisque ce dernier peut marcher même s'il n'est pas encore complétement stable, il est pilotable à distance et ses mains peuvent bouger. D'ailleurs, ses jambes sont des enceintes, ses épaules sont des morceaux de ventilateurs et ses pieds, des friteuses. impressionnant comme travail de recyclage !

Et son petit air de Johnny 5 n'est pas sans me rappeler quelques bons souvenirs d'enfance. (Un de mes films préférés de quand j'étais petit !!) Source Vous avez aimé cet article ? Rover Prototype Set To Explore Greenland Ice Sheet. NASA Rover Prototype Set To Explore Greenland Ice Sheet NASA's newest scientific rover is set for testing May 3 through June 8 in the highest part of Greenland. The robot known as GROVER, which stands for both Greenland Rover and Goddard Remotely Operated Vehicle for Exploration and Research, will roam the frigid landscape collecting measurements to help scientists better understand changes in the massive ice sheet.

This autonomous, solar-powered robot carries a ground-penetrating radar to study how snow accumulates, adding layer upon layer to the ice sheet over time. Greenland's surface layer vaulted into the news in summer 2012 when higher than normal temperatures caused surface melting across about 97 percent of the ice sheet. Scientists at NASA's Goddard Space Flight Center in Greenbelt, Md., expect GROVER to detect the layer of the ice sheet that formed in the aftermath of that extreme melt event. Research with polar rovers costs less than aircraft or satellites, the usual platforms. Crooked indifference: the musings of a curious rocket scientist - NASA Rover Prototype Set To Explore Greenland Ice... Crooked indifference it's not rocket science. it's the internet. science. oceans. space. the developing world. this is me. this is eames. follow me. email me. i believe in the romance of science and the space between the stars.

May 01 NASA Rover Prototype Set To Explore Greenland Ice Sheet Notes ← Previous Post Next Post → powered by Tumblr ER2 theme by Bill Israel. An Arduino-based robot for people who don’t know how to build robots. There are plenty of Arduino-based robots in the world, but actually building one is a bit tough if you're not familiar with Arduino programming. But a company called ArcBotics has created an Arduino-based robot called "Sparki" that can be used—and programmed—by anyone. You don't have to assemble it yourself; the little plastic robot will be ready to go out of the box with an included remote control.

To let users create additional functionality, ArcBotics is preparing programming samples and tutorials for controlling the robot's sensors and actuators. Sparki is a Kickstarter project (of course), one that has raised nearly $14,000 toward its minimum goal of $60,000, with 29 days left. ArcBotics previously used Kickstarter to raise money for its "Hexy the Hexapod" robot kit, aimed at more advanced users. Sparki is mostly geared toward education, with a suggested age of 11 and up. Sparki uses an ATMega32 processor and a custom bootloader to run Arduino functionality. Researchers build miniature flying robots, modeled on Drosophila. It's relatively easy to get something big and heavy to fly. With enough equipment, it's possible to load the object with lots of energy to power the flight, specialized parts to control it, and the computers (or people) needed to direct the flight.

But things get challenging as you make things smaller, and it gets harder to squeeze all the requisite parts into an ever-shrinking space. In that, nature has us beat, since something like a fruit fly crams all the energy, control systems, and specialized hardware into an extremely compact form. We may not be at fruit fly level yet, but researchers are giving the insects some competition.

Today's issue of Science reports on miniature flying robots that aren't much bigger than a coin. The power and control are handled externally, but the tiny robots can still perform basic maneuvers, and they have enough lift to spare that they could fly under their own power for a few minutes if the right power storage were developed. Robo-Insects of the Future. February 5, 2012 | by wordlesstech team The Harvard Monolithic Bee is a millimeter-scale flapping wing robotic insect produced using Printed Circuit MEMS (PC-MEMS) techniques.

The video below describes the manufacturing process, including pop-up book inspired assembly. This work was funded by the NSF, the Wyss Institute, and the ASEE. Tiras Lin, an undergraduate engineering student at Johns Hopkins University, has used high-speed, high-resolution cameras to gain a new perspective on the mechanics of a painted lady butterfly’s flight patterns. Information gathered from his research may be used to construct better designs for micro aerial vehicles that could be used by the United States military. via popsci - See also: Submarine Vehicle Probes Beneath an Ice Sheet. For the exploration of our planet and of others, researchers sent a probe under the Antarctic ice in January 2013. For nearly a decade, engineers have crafted various tools and methods to see what lurks below the thick ice sheets of Antarctica, Greenland, and other ice-covered landscapes.

Can life survive and thrive in these extreme, light-less environments? What does the terrain look like, and how does it affect the motion of the ice above? And what do these environments teach us about potential life on other planets? The top image above is a still captured from a video camera on baseball bat-sized submersible as it was being lowered through 800 meters (2,600 feet) of ice. The borehole was roughly 50 centimeters (20 inches) wide. The latest attempt to see what lies beneath is the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. This image is the first captured by that mini-submarine as it reached the bottom of Lake Whillans. Image © wikipedia - See also: Japanese robotic ExoSkeleton. Un russe a mis au point un robot autruche pour se déplacer.

Des robots rats pour étudier la dépression. Quand des mini-robots se relaient pour sauver un mannequin. C’est la fin ! Ce robot militaire lance des parpaings. ARGUS, le drone qui voit tout. Les robots ne tueront pas l'emploi. GRACE, le robot poisson-planeur qui étudie l'eau. Permaduino, pour faire persister ses projets Arduino. Crawler Robot on the Loose at German Lab. Robotique. Histoire de la robotique. Des robots hérissons pourraient explorer Mars. Des drones de surveillance bientôt commercialisés au Japon. Un robot alimenté par les eaux usées. Milli-Motéine, le petit robot qui pouvait changer de forme. Skube, un concept de jukebox Spotify. Baxter, un nouveau robot industriel abordable. Les drones n'inspirent pas encore confiance.

Les quadricoptères à la rescousse des policiers. Planter cet hélicoptère tant que vous voulez ! Un exosquelette pneumatique pour des muscles de compétition. Un nouveau concept de capteur de marche. Piloter un drone n'est pas un jeu vidéo. HSR, le robot d'aide à la personne de Toyota. Wall-Ye, le robot viticulteur. Multi-stage Micro Rockets for Robotic Insects.

Janken (rock-paper-scissors) Robot with 100% winning rate. Le nouvel aspirateur de Sharp plus malin que le Roomba ? Ce robot qui va cuisiner 360 hamburgers à l'heure. Une main robotisée véritablement souple. Après les robots, les bio-bots. Le robot qui réajustait son environnement pour travailler. Hibot le robot serpent. Ce robot grimpe sur des cure-dents. Les "Wave Glider" traquent les Grands Blancs. Une nouvelle vidéo montre les capacités du nouveau Furby. Un robot capable de nourrir des personnes handicapées. WREX, l'exosquelette d'une imprimante 3D. 07/20 > BE Taiwan 42 > Nouveau laboratoire franco-taïwanais en robotique. Every Kid Needs One of These DIY Robotics Kits. Ce robot serpent peut grimper le long des poteaux. Bientôt des essaims de drones Samarai ? Des robots qui grimpent aux éoliennes. Des doigts robotiques plus précis que les nôtres.

Emox, un petit robot compagnon programmable. 05/31 > BE France 270 > Vol inaugural du premier drone à usage civil de Delta Drone. Les micro-drônes gagnent en réactivité grâce au MIT. Des robots qui grimpent à vos vêtements. Des robots de bulles d’air. Des robots capables de répliquer des formes. Les rendez-vous du Pipame - Présentation du séminaire "Robotique personnelle et de service : quels produits pour quels usages ?" - DGCIS : Prospective, études économiques et évaluation. WIRED. Un robot bien inspiré. 03/09 > BE Japon 608 > Un logiciel libre pour des robots toujours plus intelligents. 03/06 > BE République Tchèque 28 > Une infirmière robotisée à domicile ! Des microrobots produits en série. Video: Groombot Brushes Cat, Ushering in a New Era of Remote Robo-Petting. Un bras bionique connecté au système nerveux.

Hod Lipson builds "self-aware" robots. Robert Full on animal movement. Universal robotic gripper. Hak5 - Simple Quadshot Programming with XML - Part 3. Les dents de l’aster. Skylar Tibbits: Can we make things that make themselves? Swarmanoid – Les robots communicants. DEFCON 19: Quadshot Open Source Aircraft - HakTip. Les robots débarquent et c'est une bonne nouvelle. Kinect Hackers Are Changing the Future of Robotics | Magazine. Crawler Robot on the Loose at German Lab. A robot that flies like a bird.