Maths

Facebook Twitter

Poincaré Conjecture - Numberphile. Courbe de Peano. COURBE DE PEANOPeano's curve, peanosche Kurve Définition n°1 : La courbe de Peano est une courbe remplissant le carré [0, 1]2 définie par l'algorithme :

Courbe de Peano

Courbe de Peano. Un article de Wikipédia, l'encyclopédie libre.

Courbe de Peano

Giuseppe Peano Une courbe de Peano est une courbe plane paramétrée par une fonction continue sur l'intervalle unité [0, 1], surjective dans le carré [0, 1]×[0, 1], c'est-à-dire que la courbe passe par chaque point du carré : elle « remplit l'espace ». Toutes ces courbes sont des fractales : bien que formées d'une simple ligne, elles sont de dimension 2. Ce type de courbes est nommé en l'honneur de Giuseppe Peano, qui fut le premier à en décrire une. After 400 years, mathematicians find a new class of shapes.

The works of the Greek polymath Plato have kept people busy for millennia.

After 400 years, mathematicians find a new class of shapes

Mathematicians have long pondered Platonic solids, a collection of geometric forms that are highly regular and are frequently found in nature. Platonic solids are generically termed equilateral convex polyhedra. In the millennia since Plato's time, only two other collections of equilateral convex polyhedra have been found: Archimedean solids (including the truncated icosahedron) and Kepler solids (including rhombic polyhedra). Nearly 400 years after the last class was described, mathematicians claim that they may have now identified a new, fourth class, which they call Goldberg polyhedra. Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses. Author Affiliations Edited by Patrick Fowler, The University of Sheffield, Sheffield, United Kingdom, and accepted by the Editorial Board January 7, 2014 (received for review June 10, 2013) Significance.

Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses

Wikipedia-size maths proof too big for humans to check - physics-math - 17 February 2014. If no human can check a proof of a theorem, does it really count as mathematics?

Wikipedia-size maths proof too big for humans to check - physics-math - 17 February 2014

That's the intriguing question raised by the latest computer-assisted proof. It is as large as the entire content of Wikipedia, making it unlikely that will ever be checked by a human being. "It might be that somehow we have hit statements which are essentially non-human mathematics," says Alexei Lisitsa of the University of Liverpool, UK, who came up with the proof together with colleague Boris Konev. The proof is a significant step towards solving a long-standing puzzle known as the Erdős discrepancy problem. [1402.2184] A SAT Attack on the Erdos Discrepancy Conjecture. Computers are providing solutions to math problems that we can't check.

How to work out proofs in Analysis I | Gowers's Weblog. Now that we’ve had several results about sequences and series, it seems like a good time to step back a little and discuss how you should go about memorizing their proofs.

How to work out proofs in Analysis I | Gowers's Weblog

And the very first thing to say about that is that you should attempt to do this while making as little use of your memory as you possibly can. Suppose I were to ask you to memorize the sequence 5432187654321. Would you have to learn a string of 13 symbols? John Baez on the number 8. John Baez on the number 5. John Baez on the number 24. ASTOUNDING: 1 + 2 + 3 + 4 + 5 + ... = -1/12. The Infinite Hotel Paradox - Jeff Dekofsky. The On-Line Encyclopedia of Integer Sequences® (OEIS®) Curly chaps. Euler spiral. A double-end Euler spiral.

Euler spiral

The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). Euler spirals are also commonly referred to as spiros, clothoids or Cornu spirals. Probabilités et Statistique. Prime Spirals - Numberphile. Heady mathematics: Describing popping bubbles in a foam. The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Reading Materials by Eugene Wigner "The Unreasonable Effectiveness of Mathematics in the Natural Sciences," in Communications in Pure and Applied Mathematics, vol. 13, No.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

I (February 1960). New York: John Wiley & Sons, Inc. The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Reading Materials by R.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

W. HAMMING Reprinted From: The American Mathematical Monthly Volume 87 Number 2 February 1980. Is Math a Feature of the Universe or a Feature of Human Creation? | Idea Channel | PBS. Biggest Thing in the Universe - Sixty Symbols. Dragon Curve - Numberphile. New Largest Known Prime Number - Numberphile. After almost 20 years, math problem falls. Mathematicians and engineers are often concerned with finding the minimum value of a particular mathematical function.

After almost 20 years, math problem falls

That minimum could represent the optimal trade-off between competing criteria — between the surface area, weight and wind resistance of a car’s body design, for instance. In control theory, a minimum might represent a stable state of an electromechanical system, like an airplane in flight or a bipedal robot trying to keep itself balanced. There, the goal of a control algorithm might be to continuously steer the system back toward the minimum. For complex functions, finding global minima can be very hard. Random Numbers - Numberphile. Encryption and HUGE numbers - Numberphile. Who was the REAL Good Will Hunting? - Numberphile. The problem in Good Will Hunting - Numberphile.

Squaring the Circle - Numberphile. 5 and Penrose Tiling - Numberphile. Un nouveau nombre premier à 17 millions de chiffres. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs (qui sont alors 1 et lui-même). (wikipedia) Ces nombres très particuliers (2,3,5,7,11,13,17,19...) sont très utilisés, notamment en cryptographie, pour protéger certaines données. Un professeur vient d'en découvrir un nouveau, long de 17 millions de chiffres. C’est à l’Université de Central Missouri que l’on pourra trouver le « découvreur » de ce nombre absolument gigantesque. 257,885,161 – 1, tel est le nombre que l’ordinateur du Docteur Curtis Cooper a découvert.

Avec ses plus de 17 millions de chiffres, il surclasse haut la main le précédent détenteur du record avec ses « seulement » 13 millions mis au jour en 2009. Unicity distance. Consider an attack on the ciphertext string "WNAIW" encrypted using a Vigenère cipher with a five letter key. Conceivably, this string could be deciphered into any other string — RIVER and WATER are both possibilities for certain keys. This is a general rule of cryptanalysis: with no additional information it is impossible to decode this message. Of course, even in this case, only a certain number of five letter keys will result in English words.

Trying all possible keys we will not only get RIVER and WATER, but SXOOS and KHDOP as well. The number of "working" keys will likely be very much smaller than the set of all possible keys. How to theoretically turn a sphere inside out. Abc Conjecture - Numberphile. IDTIMWYTIM: Stochasticity - THAT'S Random. Polymathematics. Proof claimed for deep connection between primes. The usually quiet world of mathematics is abuzz with a claim that one of the most important problems in number theory has been solved. Mathematician Shinichi Mochizuki of Kyoto University in Japan has released a 500-page proof of the abc conjecture, which proposes a relationship between whole numbers — a 'Diophantine' problem. The abc conjecture, proposed independently by David Masser and Joseph Oesterle in 1985, might not be as familiar to the wider world as Fermat’s Last Theorem, but in some ways it is more significant.

“The abc conjecture, if proved true, at one stroke solves many famous Diophantine problems, including Fermat's Last Theorem,” says Dorian Goldfeld, a mathematician at Columbia University in New York. Infinity is bigger than you think - Numberphile. Root 2 - Numberphile. 1 and Prime Numbers - Numberphile. 998,001 and its Mysterious Recurring Decimals - Numberphile. 6,000,000 and Abel Prize - Numberphile. Mathgen paper accepted! | That's Mathematics! I’m pleased to announce that Mathgen has had its first randomly-generated paper accepted by a reputable journal! On August 3, 2012, a certain Professor Marcie Rathke of the University of Southern North Dakota at Hoople submitted a very interesting article to Advances in Pure Mathematics, one of the many fine journals put out by Scientific Research Publishing.

(Your inbox and/or spam trap very likely contains useful information about their publications at this very moment!) This mathematical tour de force was entitled “Independent, Negative, Canonically Turing Arrows of Equations and Problems in Applied Formal PDE”, and I quote here its intriguing abstract: Let \rho = A. Tel.archives-ouvertes.fr/docs/00/42/28/54/ANNEX/Slides_phd.pdf. Mdpdanech.free.fr/theses/these_freville.pdf. Another simulation giving evidence that (n-1) gives us an unbiased estimate of variance. Social Science Research Network (SSRN) Home Page. Numberphile - Videos about Numbers and Stuff. Les rhinos sauvés par les maths? « Sachant que le nombre de rhinocéros en liberté en Afrique du Sud avoisine les 20 000, que l’augmentation du braconnage suit une courbe exponentielle et que le prix de la corne atteint au marché noir 50 000 euros le kilo, vous répondrez à la question suivante : l'élevage intensif de rhinocéros dans des fermes et l'ouverture officielle d'un marché de la corne permettraient-ils: 1) de faire suffisamment chuter les prix pour décourager le braconnage, 2) de générer assez d'argent pour protéger et gérer les représentants de l’espèce en liberté dans les parcs nationaux?

Vous tiendrez compte, dans vos projections du coût des mesures de protection et de lutte contre le braconnage ». Base 12 - Numberphile. Tau vs Pi Smackdown - Numberphile. Julia set. Problems with Zero - Numberphile. 1,296 and Yahtzee - Numberphile. The Most Mathematical Flag - Numberphile. Arxiv.org/pdf/math.NT/0404188.pdf. Statistique multivariée. Catalog Page for PIA16075. Intro to Cryptography.

Le réseau complexe du jeu de go. 04/05 > BE Allemagne 566 > Les mathématiques pour optimiser le marché des énergies renouvelables. Jean-Baptiste Michel: The mathematics of history. Un monde de fractales dans un fichier de 4 kilobytes. De l’inexactitude dans nos ordinateurs. L'intelligence collective au service des décideurs. High School Mathematics Extensions/Discrete Probability. Ulam spiral.

Doodling in Math: Sick Number Games. Proof of the existence of God set down on paper.

AI & Optimization

Santé | Jeunes et minces? Les maths contre la retouche photo. Empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf. Logic. Game Theory. Cryptographie. Cypherpunk. How Bull Markets Evolve into Bubbles. Graphe planaire. Théorème des quatre couleurs. Problème NP-complet. Mba.tuck.dartmouth.edu/pages/faculty/andrew.bernard/oscars.pdf. De l’esthétique des fractions continues. Votre boulanger est-il discret? (1/2) Boulanger: la saga continue (2/2)

Stats

Topology - Geometry. Logic. Chaos theory. Hasse diagram. Sabermetrics. Benford's law.