Functional magnetic resonance imaging

Researcher checking fMRI images Functional magnetic resonance imaging or functional MRI (fMRI) is a functional neuroimaging procedure using MRI technology that measures brain activity by detecting associated changes in blood flow.[1] This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases. Functional magnetic resonance imaging
Magnetic resonance imaging Magnetic resonance imaging (MRI), nuclear magnetic resonance imaging (NMRI), or magnetic resonance tomography (MRT) is a medical imaging technique used in radiology to investigate the anatomy and function of the body in both health and disease. MRI scanners use strong magnetic fields and radiowaves to form images of the body. The technique is widely used in hospitals for medical diagnosis, staging of disease and for follow-up without exposure to ionizing radiation. Magnetic resonance imaging
Diffusion MRI Diffusion MRI Diffusion MRI (or dMRI) is a magnetic resonance imaging (MRI) method which came into existence in the mid-1980s.[1][2][3] It allows the mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively. Molecular diffusion in tissues is not free, but reflects interactions with many obstacles, such as macromolecules, fibers, membranes, etc. Water molecule diffusion patterns can therefore reveal microscopic details about tissue architecture, either normal or in a diseased state.
Positron emission tomography Positron emission tomography PET/CT-System with 16-slice CT; the ceiling mounted device is an injection pump for CT contrast agent Whole-body PET scan using 18F-FDG Positron emission tomography (PET)[1] is a nuclear medicine, functional imaging technique that produces a three-dimensional image of functional processes in the body.
Animation of a SPECT scanning procedure. Single-photon emission computed tomography (SPECT, or less commonly, SPET) is a nuclear medicine tomographic[1] imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera.[2] However, it is able to provide true 3D information. Single photon emission computed tomography Single photon emission computed tomography
Simultaneous video and EEG recording of two guitarists improvising. Electroencephalography (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations resulting from ionic current flows within the neurons of the brain.[1] In clinical contexts, EEG refers to the recording of the brain's spontaneous electrical activity over a short period of time, usually 20–40 minutes, as recorded from multiple electrodes placed on the scalp. Diagnostic applications generally focus on the spectral content of EEG, that is, the type of neural oscillations that can be observed in EEG signals. Electroencephalography

Electroencephalography