Fuerza Motriz Térmica

Facebook Twitter
Power station History[edit] The world's first power station was designed and built by Sigmund Schuckert in the Bavarian town of Ettal and went into operation in 1878.[4] The station consisted of 24 dynamo electric generators which were driven by a steam engine. It was used to illuminate a grotto in the gardens of Linderhof Palace. In September 1882 in New York, the Pearl Street Station was established by Edison to provide electric lighting in the lower Manhattan Island area. The station ran until destroyed by fire in 1890. Power station
Cogeneración de Energía

Rankine cycle The Rankine cycle is a mathematical model that is used to predict the performance of steam engines. The Rankine cycle is an idealised thermodynamic cycle of a heat engine that converts heat into mechanical work. The heat is supplied externally to a closed loop, which usually uses water as the working fluid. The Rankine cycle, in the form of steam engines, generates about 90% of all electric power used throughout the world,[1] including virtually all biomass, coal, solar thermal and nuclear power plants. It is named after William John Macquorn Rankine, a Scottish polymath and Glasgow University professor. Description[edit] Rankine cycle
Organic Rankine cycle The Organic Rankine cycle (ORC) is named for its use of an organic, high molecular mass fluid with a liquid-vapor phase change, or boiling point, occurring at a lower temperature than the water-steam phase change. The fluid allows Rankine cycle heat recovery from lower temperature sources such as biomass combustion, industrial waste heat, geothermal heat, solar ponds etc. The low-temperature heat is converted into useful work, that can itself be converted into electricity. A prototype was first developed and exhibited in 1961 by solar engineers Harry Zvi Tabor and Lucien Bronicki. Working principle of the ORC[edit] Organic Rankine cycle
Waste heat Waste heat Instead of being “wasted” by release into the ambient environment, sometimes waste heat (or cold) can be utilized by another process, or a portion of heat that would otherwise be wasted can be reused in the same process if make-up heat is added to the system (as with heat recovery ventilation in a building). Thermal energy storage, which includes technologies both for short- and long-term retention of heat or cold, can create or improve the utility of waste heat (or cold). One example is waste heat from air conditioning machinery stored in a buffer tank to aid in night time heating. Another is seasonal thermal energy storage (STES) at a foundry in Sweden.
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-based materials which are specifically called lignocellulosic biomass.[1] As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy sources today;[2] examples include forest residues (such as dead trees, branches and tree stumps), yard clippings, wood chips and even municipal solid waste. Biomass Biomass
Applied Thermal Engineering - An examination of regenerative organic Rankine cycles using dry fluids
Performance of a small-scale regenerative Rankine power cycle employing a scroll expander A small scroll expander has been incorporated into a power cycle for performance evaluation. Using heat from a circulating hot oil supply, a working fluid (R123) was vapourized under pressure and fed to the inlet of the expander. Power generated was measured by a torque/rotation rate sensor as the power was delivered to a compressor. The exhausted working fluid was then sent through a regenerator to recover thermal energy, and then to an air-cooled condensation heat exchanger. To complete the cycle, the working fluid passed through a pump and was fed back to the boiler by way of the regenerator. The major components of the power cycle were monitored for performance, and from these values, overall cycle efficiency was determined. Performance of a small-scale regenerative Rankine power cycle employing a scroll expander
Geothermal electricity is electricity generated from geothermal energy. Technologies in use include dry steam power plants, flash steam power plants and binary cycle power plants. Geothermal electricity generation is currently used in 24 countries,[1] while geothermal heating is in use in 70 countries.[2] Estimates of the electricity generating potential of geothermal energy vary from 35 to 2,000 GW.[2] Current worldwide installed capacity is 10,715 megawatts (MW), with the largest capacity in the United States (3,086 MW),[3] El Salvador, Kenya, the Philippines, Iceland and Costa Rica generate more than 15% of their electricity from geothermal sources. Geothermal electricity Geothermal electricity
Solar thermal energy Low-temperature solar heating and cooling systems[edit] Systems for utilizing low-temperature solar thermal energy include means for heat collection; usually heat storage, either short-term or interseasonal; and distribution within a structure or a district heating network. In some cases more than one of these functions is inherent to a single feature of the system (e.g. some kinds of solar collectors also store heat). Solar thermal energy
Nuclear power Nuclear power, or nuclear energy, is the use of exothermic nuclear processes,[1] to generate useful heat and electricity. The term includes nuclear fission, nuclear decay and nuclear fusion. Presently the nuclear fission of elements in the actinide series of the periodic table produce the vast majority of nuclear energy in the direct service of humankind, with nuclear decay processes, primarily in the form of geothermal energy, and radioisotope thermoelectric generators, in niche uses making up the rest. Nuclear power
- La de la Termodinámica nos revela el principio de la conservación de laenergía, sin embargo en la realidad se sabe que esto no ocurre de forma tal, ypor lo tanto existe una restricción en cuanto a la conversión de ésta; de estaobservación se desprende la segunda ley, la cual se basa en dos afirmaciones:1. “Ningún mecanismo puede funcionar de tal manera que su únicoefecto (en el sistema y en los alrededores) sea el de convertir completamente calor que absorbe el sistema en trabajo hecho por elmismo” Plantas de Vapor Plantas de Vapor
Virtual Power Plant
bined-Cycle Gas & Steam Turbine Power Plants - Rolf Kehlhofer, Bert Rukes, Frank Hannemann, Franz Stirnimann
Proceso[editar · editar código] El ciclo Rankine es un ciclo de potencia representativo del proceso termodinámico que tiene lugar en una central térmica de vapor. Utiliza un fluido de trabajo que alternativamente evapora y condensa, típicamente agua (si bien existen otros tipos de sustancias que pueden ser utilizados, como en los ciclos Rankine orgánicos). Mediante la quema de un combustible, el vapor de agua es producido en una caldera a alta presión para luego ser llevado a una turbina donde se expande para generar trabajo mecánico en su eje (este eje, solidariamente unido al de un generador eléctrico, es el que generará la electricidad en la central térmica). El vapor de baja presión que sale de la turbina se introduce en un condensador, equipo donde el vapor condensa y cambia al estado líquido (habitualmente el calor es evacuado mediante una corriente de refrigeración procedente del mar, de un río o de un lago). Ciclo de Rankine
Ciclos de Vapor CICLOS DE VAPOR ABIERTO Y RANKINE(Actualizado a Mayo de 2002) En este punto presentaremos los diversos ciclos de vapor que se utilizan habitualmente. El enfoque a usar privilegiará el comprender el ciclo utilizando diagrama de bloques, diagramas presión-volumen y diagramas T-S.El diagrama de bloques muestra el proceso a seguir utilizando bloques que representan los elementos físicos del proceso.
CICLO DE HIRN(Actualizado a Mayo de 2002) Ya vimos en el punto anterior que un ciclo de Rankine es termodinámicamente muy similar a su ciclo de Carnot correspondiente. Sin embargo tiene algunos defectos de importancia: Ciclo Hirn - Rankine Sobrecalentado
CICLO DE HIRN CON VARIOS SOBRECALENTAMIENTOS(Actualizado a Mayo de 2002) Al analizar las ventajas y desventajas del ciclo de Rankine, se mencionó el hecho de que a medida que uno se acerca a la presión o temperatura crítica del agua, el vapor tiende a salir más húmedo de la máquina. Esto tiende a ser así incluso con un ciclo de Hirn. Ciclo Rankine Recalentado
Extracción de Vapor - Regenerativo Es decir: De esta ecuación podemos despejar el valor de X: Normalmente X es una fracción entre 0,1 y 0,2. Con esto va a haber un aumento de rendimiento significativo (del orden de 1 a 2 puntos para 1 extracción, y valores decrecientes para extracciones sucesivas).
Ciclo Rankine
Mercury vapour turbine
Mercury as a Working Fluid.
Superheated Steam : International site for Spirax Sarco
Turbinas a Vapor
Steam turbine
University of Rochester : Search
Turbinas De Vapor
Funcionamiento de la turbina de vapor for TESIS CARO
Popular Mechanics - Google Books
Energy Citations Database (ECD) - - Document #5358369
Steam Turbine Failure at Hinkley Point ‘A’
Eje de turbina de vapor