background preloader

E-Kangaroo

Facebook Twitter

Kangaroo - Mesh Relaxation - Tutorial 3. Kangaroo discussions and examples from GH forum. Home about us contact sg2011 cluster: use the force Through Kangaroo, the live physics plug-in, this cluster will explore ways of using the simulated interaction of physical forces and real-time spatial inputs to develop novel form-finding processes. news and updates discussions cluster champions members view all image albums videos events No event created yet. discussion Discussion started by Daniel Piker , on 14 Mar 11:53 AM Over the past few months I've posted fairly regularly on the Grasshopper forum about Kangaroo - responding to various questions, often with example files and expanding on the explanations in the manual.

In the hope that these discussions and examples might be useful to others I've collected some of them here: Measuring/displaying stresses. (and also some more general thoughts about structural optimization) distorting a flat hexagonal grid spring rest lengths shrinkwrapping geometry simple catenary. Project Kangaroo – Live 3D Physics for Rhino/Grasshopper – update. Here are some more videos of early tests of Kangaroo – the live physics engine for design modelling that I have recently started developing – and a bit more about its context and what it could be used for. One of the things it allows is the virtual use of some of the physical form-finding techniques for design that were pioneered by architects/engineers such as Frei Otto and Antoni Gaudí. They made use of a principle discovered by Robert Hooke : When a flexible chain hangs freely its elements are in pure tension, and when this form is flipped vertically it produces a form of pure compression, which is ideal for constructing masonry arches, an idea which can be extended to chain nets and stone vaults : Another area in which physics based form-finding has been important in architecture is in the design of lightweight and tensile structures such as cable-nets and fabric canopies.

Kangaroo allows the relaxation of nets of arbitrary topology: I believe that fun need not mean frivolous. Kangaroo Manual (Grasshopper version) Example files. Edit 29/04/14 - Here is a new collection of more than 80 example files, organized by category: This zip is the most up to date collection of examples at the moment, and collects together a wide variety of definitions made for various workshops and in response to forum questions. Thanks to all workshop attendees and forum members for your valuable input. It is possible I've missed a few useful ones. If there is something else you'd like to see included please let me know The examples below are mostly older, but I will leave them here for now until I am certain all the same topics are adequately covered in the 'official' collection above.

Showing how the trail component can be used to trace the motion of moving particles The wind component acts on sets of 3 points (typically each the vertices of each face of a triangulated mesh). CurvePull - Pulls particles onto a curve. The Vortex component rotates one particle about an axis defined by 2 points. (also requires WeaverBird) drape_example.gh. Kangaroo. The Cloud at Burning Man So easily can fun and playfulness be neglected within Architecture. My proposal stands as an embodiment of these aspects, creating an area of inclusive participation, a space that can be explored and is only complete when occupied. Fallen from the sky and tied down in the middle of Black Rock City ‘The Cloud’ stands as a mirage for weary-eyed travellers from far and wide, a beacon of sanctuary that creates spaces that provide respite from the harsh conditions of the desert using permeable fabric to create a cool atmosphere diffusing light within daylight and emitting a soft glow from within in the evening.

Principle Stress Analysis Walking through the dessert after a long journey along the silk road ‘The Cloud’ emerges as a whimsical mirage. The principle structure of the cloud is composed of hollow rolled steel tubes ,sandwiched between thick perforated fabric, strategically placed to withstand the extreme wind conditions as well as human interaction. Kangaroo Physics. Example files. Kangaroo Manual (Grasshopper version) Kangaroo Manual (Grasshopper version) Form-finding – Comparison between Karamba and Kangaroo | www.albertopugnale.com. A simple NURBS surfaces has been divided in a 10×10 grid, and then used as the reference geometry for a form-finding test. The four points at the corners have been constrained, and the simulation of an hanging model has been set up in both Karamba and Kangaroo. (Karamba, for instance, uses an incremental approach to handle geometrical non-linearity, and therefore to simulate hanging models).

The results of the two processes are shown below. (Karamba generated the fixed hanging model while the Kangaroo mesh has been overlapped later on). The two final geometries are almost coincident, and both tools can be used when a quick form-finding procedure is needed in conceptual design. You can download the Grasshopper file here: Like this: Like Loading... Kangaroo: Spring Force - Grasshopper. Kangaroo Physics.