background preloader

Rentgenstari

Facebook Twitter

X-ray. X-radiation (composed of X-rays) is a form of electromagnetic radiation. Most X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3×1016 Hz to 3×1019 Hz) and energies in the range 100 eV to 100 keV. However, much higher-energy X-rays can be generated for medical and industrial uses, for example radiotherapy, which utilizes linear accelerators to generate X-rays in the ranges of 6–20 MeV. X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to with terms meaning Röntgen radiation, after Wilhelm Röntgen,[1] who is usually credited as its discoverer, and who had named it X-radiation to signify an unknown type of radiation.[2] Spelling of X-ray(s) in the English language includes the variants x-ray(s), xray(s) and X ray(s).[3] There is no universal consensus for a definition distinguishing between X-rays and gamma rays.

X-rays. "Bremsstrahlung" means "braking radiation" and is retained from the original German to describe the radiation which is emitted when electrons are decelerated or "braked" when they are fired at a metal target. Accelerated charges give off electromagnetic radiation, and when the energy of the bombarding electrons is high enough, that radiation is in the x-ray region of the electromagnetic spectrum. It is characterized by a continuous distribution of radiation which becomes more intense and shifts toward higher frequencies when the energy of the bombarding electrons is increased. The curves above are from the 1918 data of Ulrey, who bombarded tungsten targets with electrons of four different energies. The bombarding electrons can also eject electrons from the inner shells of the atoms of the metal target, and the quick filling of those vacancies by electrons dropping down from higher levels gives rise to sharply defined characteristic x-rays.

X Rays Work. 1940 X Ray Physics Documentary By William D Coolidge. X-Rays. As the wavelengths of light decrease, they increase in energy. X-rays have smaller wavelengths and therefore higher energy than ultraviolet waves. We usually talk about X-rays in terms of their energy rather than wavelength. This is partially because X-rays have very small wavelengths. It is also because X-ray light tends to act more like a particle than a wave. X-rays were first observed and documented in 1895 by Wilhelm Conrad Roentgen, a German scientist who found them quite by accident when experimenting with vacuum tubes. The Earth's atmosphere is thick enough that virtually no X-rays are able to penetrate from outer space all the way to the Earth's surface. How do we "see" using X-ray light?

What would it be like to see X-rays? We use satellites with X-ray detectors on them to do X-ray astronomy. What does X-ray light show us? Many things in space emit X-rays, among them are black holes, neutron stars, binary star systems, supernova remnants, stars, the Sun, and even some comets!